Théorie des groupes
On the occurrence of elementary abelian p-groups as the Schur multiplier of non-abelian p-groups
Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 803-806

Voir la notice de l'article provenant de la source Numdam

We prove that every elementary abelian p-group, for odd primes p, occurs as the Schur multiplier of some non-abelian finite p-group.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.445
Classification : 20J99, 20D15
Keywords: Schur multiplier, finite $p$-group

Rai, Pradeep K. 1

1 Mahindra University, Hyderabad, Telangana, India
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G4_803_0,
     author = {Rai, Pradeep K.},
     title = {On the occurrence of elementary abelian $p$-groups as the {Schur} multiplier of non-abelian $p$-groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {803--806},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G4},
     year = {2023},
     doi = {10.5802/crmath.445},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.445/}
}
TY  - JOUR
AU  - Rai, Pradeep K.
TI  - On the occurrence of elementary abelian $p$-groups as the Schur multiplier of non-abelian $p$-groups
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 803
EP  - 806
VL  - 361
IS  - G4
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.445/
DO  - 10.5802/crmath.445
LA  - en
ID  - CRMATH_2023__361_G4_803_0
ER  - 
%0 Journal Article
%A Rai, Pradeep K.
%T On the occurrence of elementary abelian $p$-groups as the Schur multiplier of non-abelian $p$-groups
%J Comptes Rendus. Mathématique
%D 2023
%P 803-806
%V 361
%N G4
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.445/
%R 10.5802/crmath.445
%G en
%F CRMATH_2023__361_G4_803_0
Rai, Pradeep K. On the occurrence of elementary abelian $p$-groups as the Schur multiplier of non-abelian $p$-groups. Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 803-806. doi: 10.5802/crmath.445

Cité par Sources :