Voir la notice de l'article provenant de la source Numdam
We prove that every elementary abelian -group, for odd primes , occurs as the Schur multiplier of some non-abelian finite -group.
Rai, Pradeep K. 1
@article{CRMATH_2023__361_G4_803_0, author = {Rai, Pradeep K.}, title = {On the occurrence of elementary abelian $p$-groups as the {Schur} multiplier of non-abelian $p$-groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {803--806}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G4}, year = {2023}, doi = {10.5802/crmath.445}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.445/} }
TY - JOUR AU - Rai, Pradeep K. TI - On the occurrence of elementary abelian $p$-groups as the Schur multiplier of non-abelian $p$-groups JO - Comptes Rendus. Mathématique PY - 2023 SP - 803 EP - 806 VL - 361 IS - G4 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.445/ DO - 10.5802/crmath.445 LA - en ID - CRMATH_2023__361_G4_803_0 ER -
%0 Journal Article %A Rai, Pradeep K. %T On the occurrence of elementary abelian $p$-groups as the Schur multiplier of non-abelian $p$-groups %J Comptes Rendus. Mathématique %D 2023 %P 803-806 %V 361 %N G4 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.445/ %R 10.5802/crmath.445 %G en %F CRMATH_2023__361_G4_803_0
Rai, Pradeep K. On the occurrence of elementary abelian $p$-groups as the Schur multiplier of non-abelian $p$-groups. Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 803-806. doi: 10.5802/crmath.445
Cité par Sources :