Analyse harmonique
The spectrality of symmetric additive measures
Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 783-793

Voir la notice de l'article provenant de la source Numdam

Let ρ be a symmetric measure of Lebesgue type, i.e.,

ρ=1 2(μ×δ 0 +δ 0 ×μ),

where the component measure μ is the Lebesgue measure supported on [t,t+1] for t{-1 2} and δ 0 is the Dirac measure at 0. We prove that ρ is a spectral measure if and only if t1 2. In this case, L 2 (ρ) has a unique orthonormal basis of the form

e 2πi(λx-λy) :λΛ 0 ,

where Λ 0 is the spectrum of the Lebesgue measure supported on [-t-1,-t][t,t+1]. Our result answers some questions raised by Lai, Liu and Prince [JFA, 2021].

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.435
Classification : 28A80, 42C05

Ai, Wen-Hui 1 ; Lu, Zheng-Yi 1 ; Zhou, Ting 2

1 Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, P. R. China
2 School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G4_783_0,
     author = {Ai, Wen-Hui and Lu, Zheng-Yi and Zhou, Ting},
     title = {The spectrality of symmetric additive measures},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {783--793},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G4},
     year = {2023},
     doi = {10.5802/crmath.435},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.435/}
}
TY  - JOUR
AU  - Ai, Wen-Hui
AU  - Lu, Zheng-Yi
AU  - Zhou, Ting
TI  - The spectrality of symmetric additive measures
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 783
EP  - 793
VL  - 361
IS  - G4
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.435/
DO  - 10.5802/crmath.435
LA  - en
ID  - CRMATH_2023__361_G4_783_0
ER  - 
%0 Journal Article
%A Ai, Wen-Hui
%A Lu, Zheng-Yi
%A Zhou, Ting
%T The spectrality of symmetric additive measures
%J Comptes Rendus. Mathématique
%D 2023
%P 783-793
%V 361
%N G4
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.435/
%R 10.5802/crmath.435
%G en
%F CRMATH_2023__361_G4_783_0
Ai, Wen-Hui; Lu, Zheng-Yi; Zhou, Ting. The spectrality of symmetric additive measures. Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 783-793. doi: 10.5802/crmath.435

Cité par Sources :