Voir la notice de l'article provenant de la source Numdam
Let be a symmetric measure of Lebesgue type, i.e.,
where the component measure is the Lebesgue measure supported on for and is the Dirac measure at . We prove that is a spectral measure if and only if . In this case, has a unique orthonormal basis of the form
where is the spectrum of the Lebesgue measure supported on . Our result answers some questions raised by Lai, Liu and Prince [JFA, 2021].
Ai, Wen-Hui 1 ; Lu, Zheng-Yi 1 ; Zhou, Ting 2
@article{CRMATH_2023__361_G4_783_0, author = {Ai, Wen-Hui and Lu, Zheng-Yi and Zhou, Ting}, title = {The spectrality of symmetric additive measures}, journal = {Comptes Rendus. Math\'ematique}, pages = {783--793}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G4}, year = {2023}, doi = {10.5802/crmath.435}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.435/} }
TY - JOUR AU - Ai, Wen-Hui AU - Lu, Zheng-Yi AU - Zhou, Ting TI - The spectrality of symmetric additive measures JO - Comptes Rendus. Mathématique PY - 2023 SP - 783 EP - 793 VL - 361 IS - G4 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.435/ DO - 10.5802/crmath.435 LA - en ID - CRMATH_2023__361_G4_783_0 ER -
%0 Journal Article %A Ai, Wen-Hui %A Lu, Zheng-Yi %A Zhou, Ting %T The spectrality of symmetric additive measures %J Comptes Rendus. Mathématique %D 2023 %P 783-793 %V 361 %N G4 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.435/ %R 10.5802/crmath.435 %G en %F CRMATH_2023__361_G4_783_0
Ai, Wen-Hui; Lu, Zheng-Yi; Zhou, Ting. The spectrality of symmetric additive measures. Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 783-793. doi: 10.5802/crmath.435
Cité par Sources :