Voir la notice de l'article provenant de la source Numdam
We replace a ring with a small -linear category , seen as a ring with several objects in the sense of Mitchell. We introduce Fredholm modules over this category and construct a Chern character taking values in the cyclic cohomology of . We show that this categorified Chern character is homotopy invariant and is well-behaved with respect to the periodicity operator in cyclic cohomology. For this, we also obtain a description of cocycles and coboundaries in the cyclic cohomology of (and more generally, in the Hopf cyclic cohomology of a Hopf-module category) by means of DG-semicategories equipped with a trace on endomorphism spaces.
Balodi, Mamta 1 ; Banerjee, Abhishek 1
@article{CRMATH_2023__361_G3_617_0, author = {Balodi, Mamta and Banerjee, Abhishek}, title = {Fredholm modules over categories, {Connes} periodicity and classes in cyclic cohomology}, journal = {Comptes Rendus. Math\'ematique}, pages = {617--652}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G3}, year = {2023}, doi = {10.5802/crmath.429}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.429/} }
TY - JOUR AU - Balodi, Mamta AU - Banerjee, Abhishek TI - Fredholm modules over categories, Connes periodicity and classes in cyclic cohomology JO - Comptes Rendus. Mathématique PY - 2023 SP - 617 EP - 652 VL - 361 IS - G3 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.429/ DO - 10.5802/crmath.429 LA - en ID - CRMATH_2023__361_G3_617_0 ER -
%0 Journal Article %A Balodi, Mamta %A Banerjee, Abhishek %T Fredholm modules over categories, Connes periodicity and classes in cyclic cohomology %J Comptes Rendus. Mathématique %D 2023 %P 617-652 %V 361 %N G3 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.429/ %R 10.5802/crmath.429 %G en %F CRMATH_2023__361_G3_617_0
Balodi, Mamta; Banerjee, Abhishek. Fredholm modules over categories, Connes periodicity and classes in cyclic cohomology. Comptes Rendus. Mathématique, Tome 361 (2023) no. G3, pp. 617-652. doi: 10.5802/crmath.429
Cité par Sources :