Algèbre
An inductive approach to generalized abundance using nef reduction
Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 417-421

Voir la notice de l'article provenant de la source Numdam

We use the canonical bundle formula for parabolic fibrations to give an inductive approach to the generalized abundance conjecture using nef reduction. In particular, we observe that generalized abundance holds for a klt pair (X,B) if the nef dimension n(K X +B+L)=2 and K X +B0 or n(K X +B+L)=3 and κ(K X +B)>0.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.420

Chaudhuri, Priyankur 1

1 Department of Mathematics, University of Maryland, College Park, MD 20742, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G1_417_0,
     author = {Chaudhuri, Priyankur},
     title = {An inductive approach to generalized abundance using nef reduction},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {417--421},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G1},
     year = {2023},
     doi = {10.5802/crmath.420},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.420/}
}
TY  - JOUR
AU  - Chaudhuri, Priyankur
TI  - An inductive approach to generalized abundance using nef reduction
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 417
EP  - 421
VL  - 361
IS  - G1
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.420/
DO  - 10.5802/crmath.420
LA  - en
ID  - CRMATH_2023__361_G1_417_0
ER  - 
%0 Journal Article
%A Chaudhuri, Priyankur
%T An inductive approach to generalized abundance using nef reduction
%J Comptes Rendus. Mathématique
%D 2023
%P 417-421
%V 361
%N G1
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.420/
%R 10.5802/crmath.420
%G en
%F CRMATH_2023__361_G1_417_0
Chaudhuri, Priyankur. An inductive approach to generalized abundance using nef reduction. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 417-421. doi: 10.5802/crmath.420

Cité par Sources :