Voir la notice de l'article provenant de la source Numdam
The aim of this work is to understand some of the asymptotic properties of sequences of lattices in a fixed locally compact group. In particular we will study the asymptotic growth of the Betti numbers of the lattices renormalized by the covolume and the rank gradient, the minimal number of generators also renormalized by the covolume. For doing so we will consider the ultraproduct of the sequence of actions of the locally compact group on the coset spaces and we will show how the properties of one of its cross sections are related to the asymptotic properties of the lattices.
Carderi, Alessandro 1
@article{CRMATH_2023__361_G1_375_0, author = {Carderi, Alessandro}, title = {Asymptotic invariants of lattices in locally compact groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {375--415}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G1}, year = {2023}, doi = {10.5802/crmath.417}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.417/} }
TY - JOUR AU - Carderi, Alessandro TI - Asymptotic invariants of lattices in locally compact groups JO - Comptes Rendus. Mathématique PY - 2023 SP - 375 EP - 415 VL - 361 IS - G1 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.417/ DO - 10.5802/crmath.417 LA - en ID - CRMATH_2023__361_G1_375_0 ER -
%0 Journal Article %A Carderi, Alessandro %T Asymptotic invariants of lattices in locally compact groups %J Comptes Rendus. Mathématique %D 2023 %P 375-415 %V 361 %N G1 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.417/ %R 10.5802/crmath.417 %G en %F CRMATH_2023__361_G1_375_0
Carderi, Alessandro. Asymptotic invariants of lattices in locally compact groups. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 375-415. doi: 10.5802/crmath.417
Cité par Sources :