Voir la notice de l'article provenant de la source Numdam
For a skew version of a graded hypersurface singularity , we study the stable category of graded maximal Cohen-Macaulay modules over . As a consequence, we see that has countably infinite Cohen–Macaulay representation type and is not a noncommutative graded isolated singularity.
Ueyama, Kenta 1
@article{CRMATH_2023__361_G2_521_0, author = {Ueyama, Kenta}, title = {Skew graded $(A_\infty )$ hypersurface singularities}, journal = {Comptes Rendus. Math\'ematique}, pages = {521--534}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G2}, year = {2023}, doi = {10.5802/crmath.415}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.415/} }
TY - JOUR AU - Ueyama, Kenta TI - Skew graded $(A_\infty )$ hypersurface singularities JO - Comptes Rendus. Mathématique PY - 2023 SP - 521 EP - 534 VL - 361 IS - G2 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.415/ DO - 10.5802/crmath.415 LA - en ID - CRMATH_2023__361_G2_521_0 ER -
%0 Journal Article %A Ueyama, Kenta %T Skew graded $(A_\infty )$ hypersurface singularities %J Comptes Rendus. Mathématique %D 2023 %P 521-534 %V 361 %N G2 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.415/ %R 10.5802/crmath.415 %G en %F CRMATH_2023__361_G2_521_0
Ueyama, Kenta. Skew graded $(A_\infty )$ hypersurface singularities. Comptes Rendus. Mathématique, Tome 361 (2023) no. G2, pp. 521-534. doi: 10.5802/crmath.415
Cité par Sources :