Voir la notice de l'article provenant de la source Numdam
For each positive integer , function , and point , the 1998 conjecture by Ginchev, Guerragio, and Rocca states that the existence of the th Peano derivative is equivalent to the existence of all generalized Riemann derivatives,
for with . A version of it for replaces all with and eliminates all . Both the GGR conjecture and its version were recently proved by the authors using non-inductive proofs based on highly non-trivial combinatorial algorithms. This article provides a second, inductive, algebraic proof to each of these theorems, based on a reduction to (Laurent) polynomials.
Ash, J. Marshall 1 ; Catoiu, Stefan 1 ; Fejzić, Hajrudin 2
@article{CRMATH_2023__361_G1_349_0, author = {Ash, J. Marshall and Catoiu, Stefan and Fejzi\'c, Hajrudin}, title = {A new proof of the {GGR} conjecture}, journal = {Comptes Rendus. Math\'ematique}, pages = {349--353}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G1}, year = {2023}, doi = {10.5802/crmath.413}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.413/} }
TY - JOUR AU - Ash, J. Marshall AU - Catoiu, Stefan AU - Fejzić, Hajrudin TI - A new proof of the GGR conjecture JO - Comptes Rendus. Mathématique PY - 2023 SP - 349 EP - 353 VL - 361 IS - G1 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.413/ DO - 10.5802/crmath.413 LA - en ID - CRMATH_2023__361_G1_349_0 ER -
%0 Journal Article %A Ash, J. Marshall %A Catoiu, Stefan %A Fejzić, Hajrudin %T A new proof of the GGR conjecture %J Comptes Rendus. Mathématique %D 2023 %P 349-353 %V 361 %N G1 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.413/ %R 10.5802/crmath.413 %G en %F CRMATH_2023__361_G1_349_0
Ash, J. Marshall; Catoiu, Stefan; Fejzić, Hajrudin. A new proof of the GGR conjecture. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 349-353. doi: 10.5802/crmath.413
Cité par Sources :