Analyse fonctionnelle
A new proof of the GGR conjecture
Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 349-353

Voir la notice de l'article provenant de la source Numdam

For each positive integer n, function f, and point x, the 1998 conjecture by Ginchev, Guerragio, and Rocca states that the existence of the nth Peano derivative f (n) (x) is equivalent to the existence of all n(n+1)/2 generalized Riemann derivatives,

D k,-j f(x)=lim h0 1 h n i=0 k (-1) i k if(x+(k-i-j)h),

for j,k with 0j<kn. A version of it for n2 replaces all -j with j and eliminates all j=k-1. Both the GGR conjecture and its version were recently proved by the authors using non-inductive proofs based on highly non-trivial combinatorial algorithms. This article provides a second, inductive, algebraic proof to each of these theorems, based on a reduction to (Laurent) polynomials.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.413
Classification : 26A24, 13F20, 15A03, 26A27

Ash, J. Marshall 1 ; Catoiu, Stefan 1 ; Fejzić, Hajrudin 2

1 Department of Mathematics, DePaul University, Chicago, IL 60614
2 Department of Mathematics, California State University, San Bernardino, CA 92407
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G1_349_0,
     author = {Ash, J. Marshall and Catoiu, Stefan and Fejzi\'c, Hajrudin},
     title = {A new proof of the {GGR} conjecture},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {349--353},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G1},
     year = {2023},
     doi = {10.5802/crmath.413},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.413/}
}
TY  - JOUR
AU  - Ash, J. Marshall
AU  - Catoiu, Stefan
AU  - Fejzić, Hajrudin
TI  - A new proof of the GGR conjecture
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 349
EP  - 353
VL  - 361
IS  - G1
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.413/
DO  - 10.5802/crmath.413
LA  - en
ID  - CRMATH_2023__361_G1_349_0
ER  - 
%0 Journal Article
%A Ash, J. Marshall
%A Catoiu, Stefan
%A Fejzić, Hajrudin
%T A new proof of the GGR conjecture
%J Comptes Rendus. Mathématique
%D 2023
%P 349-353
%V 361
%N G1
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.413/
%R 10.5802/crmath.413
%G en
%F CRMATH_2023__361_G1_349_0
Ash, J. Marshall; Catoiu, Stefan; Fejzić, Hajrudin. A new proof of the GGR conjecture. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 349-353. doi: 10.5802/crmath.413

Cité par Sources :