Voir la notice de l'article provenant de la source Numdam
The present paper deals with lines contained in a smooth complex cubic threefold. It is well-known that the set of lines of the second type on a cubic threefold is a curve on its Fano surface. Here we give a description of the singularities of this curve.
Bockondas, Gloire Grâce 1 ; Boissière, Samuel 2
@article{CRMATH_2023__361_G4_747_0, author = {Bockondas, Gloire Gr\^ace and Boissi\`ere, Samuel}, title = {Triple lines on a cubic threefold}, journal = {Comptes Rendus. Math\'ematique}, pages = {747--755}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G4}, year = {2023}, doi = {10.5802/crmath.410}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.410/} }
TY - JOUR AU - Bockondas, Gloire Grâce AU - Boissière, Samuel TI - Triple lines on a cubic threefold JO - Comptes Rendus. Mathématique PY - 2023 SP - 747 EP - 755 VL - 361 IS - G4 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.410/ DO - 10.5802/crmath.410 LA - en ID - CRMATH_2023__361_G4_747_0 ER -
%0 Journal Article %A Bockondas, Gloire Grâce %A Boissière, Samuel %T Triple lines on a cubic threefold %J Comptes Rendus. Mathématique %D 2023 %P 747-755 %V 361 %N G4 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.410/ %R 10.5802/crmath.410 %G en %F CRMATH_2023__361_G4_747_0
Bockondas, Gloire Grâce; Boissière, Samuel. Triple lines on a cubic threefold. Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 747-755. doi: 10.5802/crmath.410
Cité par Sources :