Voir la notice de l'article provenant de la source Numdam
We prove that for each , there exist a ruled variety of dimension and a connected algebraic subgroup of which is not contained in a maximal one.
Fong, Pascal 1 ; Zikas, Sokratis 1
@article{CRMATH_2023__361_G1_313_0, author = {Fong, Pascal and Zikas, Sokratis}, title = {Connected algebraic subgroups of groups of birational transformations not contained in a maximal one}, journal = {Comptes Rendus. Math\'ematique}, pages = {313--322}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G1}, year = {2023}, doi = {10.5802/crmath.406}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.406/} }
TY - JOUR AU - Fong, Pascal AU - Zikas, Sokratis TI - Connected algebraic subgroups of groups of birational transformations not contained in a maximal one JO - Comptes Rendus. Mathématique PY - 2023 SP - 313 EP - 322 VL - 361 IS - G1 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.406/ DO - 10.5802/crmath.406 LA - en ID - CRMATH_2023__361_G1_313_0 ER -
%0 Journal Article %A Fong, Pascal %A Zikas, Sokratis %T Connected algebraic subgroups of groups of birational transformations not contained in a maximal one %J Comptes Rendus. Mathématique %D 2023 %P 313-322 %V 361 %N G1 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.406/ %R 10.5802/crmath.406 %G en %F CRMATH_2023__361_G1_313_0
Fong, Pascal; Zikas, Sokratis. Connected algebraic subgroups of groups of birational transformations not contained in a maximal one. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 313-322. doi: 10.5802/crmath.406
Cité par Sources :