Théorie du contrôle
On uniform controllability of 1D transport equations in the vanishing viscosity limit
Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 265-312

Voir la notice de l'article provenant de la source Numdam

We consider a one dimensional transport equation with varying vector field and a small viscosity coefficient, controlled by one endpoint of the interval. We give upper and lower bounds on the minimal time needed to control to zero, uniformly in the vanishing viscosity limit.

We assume that the vector field varies on the whole interval except at one point. The upper/lower estimates we obtain depend on geometric quantities such as an Agmon distance and the spectral gap of an associated semiclassical Schrödinger operator. They improve, in this particular situation, the results obtained in the companion paper [38].

The proofs rely on a reformulation of the problem as a uniform observability question for the semiclassical heat equation together with a fine analysis of localization of eigenfunctions both in the semiclassically allowed and forbidden regions [40], together with estimates on the spectral gap [33, 1]. Along the proofs, we provide with a construction of biorthogonal families with fine explicit bounds, which we believe is of independent interest.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.405
Classification : 93B07, 93B05, 35B25, 35F05, 35K05, 93C73

Laurent, Camille 1 ; Léautaud, Matthieu 2

1 CNRS UMR 7598 and Sorbonne Universités UPMC Univ Paris 06, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
2 Laboratoire de Mathématiques d’Orsay, UMR 8628, Université Paris-Saclay, CNRS, Bâtiment 307, 91405 Orsay Cedex France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G1_265_0,
     author = {Laurent, Camille and L\'eautaud, Matthieu},
     title = {On uniform controllability of {1D} transport equations in the vanishing viscosity limit},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {265--312},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G1},
     year = {2023},
     doi = {10.5802/crmath.405},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.405/}
}
TY  - JOUR
AU  - Laurent, Camille
AU  - Léautaud, Matthieu
TI  - On uniform controllability of 1D transport equations in the vanishing viscosity limit
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 265
EP  - 312
VL  - 361
IS  - G1
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.405/
DO  - 10.5802/crmath.405
LA  - en
ID  - CRMATH_2023__361_G1_265_0
ER  - 
%0 Journal Article
%A Laurent, Camille
%A Léautaud, Matthieu
%T On uniform controllability of 1D transport equations in the vanishing viscosity limit
%J Comptes Rendus. Mathématique
%D 2023
%P 265-312
%V 361
%N G1
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.405/
%R 10.5802/crmath.405
%G en
%F CRMATH_2023__361_G1_265_0
Laurent, Camille; Léautaud, Matthieu. On uniform controllability of 1D transport equations in the vanishing viscosity limit. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 265-312. doi: 10.5802/crmath.405

Cité par Sources :