Voir la notice de l'article provenant de la source Numdam
We consider a one dimensional transport equation with varying vector field and a small viscosity coefficient, controlled by one endpoint of the interval. We give upper and lower bounds on the minimal time needed to control to zero, uniformly in the vanishing viscosity limit.
We assume that the vector field varies on the whole interval except at one point. The upper/lower estimates we obtain depend on geometric quantities such as an Agmon distance and the spectral gap of an associated semiclassical Schrödinger operator. They improve, in this particular situation, the results obtained in the companion paper [38].
The proofs rely on a reformulation of the problem as a uniform observability question for the semiclassical heat equation together with a fine analysis of localization of eigenfunctions both in the semiclassically allowed and forbidden regions [40], together with estimates on the spectral gap [33, 1]. Along the proofs, we provide with a construction of biorthogonal families with fine explicit bounds, which we believe is of independent interest.
Laurent, Camille 1 ; Léautaud, Matthieu 2
@article{CRMATH_2023__361_G1_265_0, author = {Laurent, Camille and L\'eautaud, Matthieu}, title = {On uniform controllability of {1D} transport equations in the vanishing viscosity limit}, journal = {Comptes Rendus. Math\'ematique}, pages = {265--312}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G1}, year = {2023}, doi = {10.5802/crmath.405}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.405/} }
TY - JOUR AU - Laurent, Camille AU - Léautaud, Matthieu TI - On uniform controllability of 1D transport equations in the vanishing viscosity limit JO - Comptes Rendus. Mathématique PY - 2023 SP - 265 EP - 312 VL - 361 IS - G1 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.405/ DO - 10.5802/crmath.405 LA - en ID - CRMATH_2023__361_G1_265_0 ER -
%0 Journal Article %A Laurent, Camille %A Léautaud, Matthieu %T On uniform controllability of 1D transport equations in the vanishing viscosity limit %J Comptes Rendus. Mathématique %D 2023 %P 265-312 %V 361 %N G1 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.405/ %R 10.5802/crmath.405 %G en %F CRMATH_2023__361_G1_265_0
Laurent, Camille; Léautaud, Matthieu. On uniform controllability of 1D transport equations in the vanishing viscosity limit. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 265-312. doi: 10.5802/crmath.405
Cité par Sources :