Géométrie algébrique, Structure de Hodge
Rational cubic fourfolds in Hassett divisors
[Cubiques rationnelles de dimension 4 dans les diviseurs de Hassett]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 2, pp. 129-137.

Voir la notice de l'article provenant de la source Numdam

We prove that every Hassett’s Noether–Lefschetz divisor of special cubic fourfolds contains a union of three subvarieties parametrizing rational cubic fourfolds, of codimension-two in the moduli space of smooth cubic fourfolds.

Nous prouvons que chaque diviseur de Hassett–Noether–Lefschetz de cubiques spéciales de dimension 4 contient une union de trois sous-variétés paramétrant des cubiques rationnelles de dimension 4, de codimension deux dans l’espace de modules des cubiques lisses de dimension 4.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.4
Classification : 14C30, 14E08, 14M20

Yang, Song 1 ; Yu, Xun 1

1 Center for Applied Mathematics, Tianjin University, Weijin Road 92, Tianjin 300072, China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_2_129_0,
     author = {Yang, Song and Yu, Xun},
     title = {Rational cubic fourfolds in {Hassett} divisors},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {129--137},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {2},
     year = {2020},
     doi = {10.5802/crmath.4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.4/}
}
TY  - JOUR
AU  - Yang, Song
AU  - Yu, Xun
TI  - Rational cubic fourfolds in Hassett divisors
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 129
EP  - 137
VL  - 358
IS  - 2
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.4/
DO  - 10.5802/crmath.4
LA  - en
ID  - CRMATH_2020__358_2_129_0
ER  - 
%0 Journal Article
%A Yang, Song
%A Yu, Xun
%T Rational cubic fourfolds in Hassett divisors
%J Comptes Rendus. Mathématique
%D 2020
%P 129-137
%V 358
%N 2
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.4/
%R 10.5802/crmath.4
%G en
%F CRMATH_2020__358_2_129_0
Yang, Song; Yu, Xun. Rational cubic fourfolds in Hassett divisors. Comptes Rendus. Mathématique, Tome 358 (2020) no. 2, pp. 129-137. doi : 10.5802/crmath.4. http://geodesic.mathdoc.fr/articles/10.5802/crmath.4/

[1] Addington, Nicolas; Hassett, Brendan; Tschinkel, Yuri; Várilly-Alvarado, Anthony Cubic fourfolds fibered in sextic del Pezzo surfaces, Am. J. Math., Volume 141 (2019) no. 6, pp. 1479-1500 | MR | DOI | Zbl

[2] Addington, Nicolas; Thomas, Richard Hodge theory and derived categories of cubic fourfolds, Duke Math. J., Volume 163 (2014) no. 10, pp. 1885-1927 | MR | DOI | Zbl

[3] Auel, Asher; Bernardara, Marcello; Bolognesi, Michele; Várilly-Alvarado, Anthony Cubic fourfolds containing a plane and a quintic del Pezzo surface, Algebr. Geom., Volume 1 (2014) no. 2, pp. 181-193 | MR | DOI | Zbl

[4] Bayer, Arend; Lahoz, Martí; Macrì, Emanuele; Nuer, Howard; Perry, Alexander; Stellari, Paolo Stability conditions in families (2019) (https://arxiv.org/abs/1902.08184v1)

[5] Bayer, Arend; Lahoz, Martí; Macrì, Emanuele; Stellari, Paolo Stability conditions on Kuznetsov components (2019) (https://arxiv.org/abs/1703.10839v2)

[6] Beauville, Arnaud; Donagi, Ron La variété des droites d’une hypersurface cubique de dimension 4, C. R. Math. Acad. Sci. Paris, Volume 301 (1985), pp. 703-706 | Zbl

[7] Bolognesi, Michele; Russo, Francesco; Staglianò, Giovanni Some loci of rational cubic fourfolds, Math. Ann., Volume 373 (2019) no. 1-2, pp. 165-190 | MR | DOI | Zbl

[8] Clemens, C. Herbert; Griffiths, Phillip The intermediate Jacobian of the cubic threefold, Ann. Math., Volume 95 (1972), pp. 281-356 | DOI | MR | Zbl

[9] Fano, Gino Sulle forme cubiche dello spazio a cinque dimensioni contenenti rigate razionali del 4 0 ordine, Comment. Math. Helv., Volume 15 (1943), pp. 71-80 | MR | DOI | Zbl

[10] Hassett, Brendan Some rational cubic fourfolds, J. Algebr. Geom., Volume 8 (1999) no. 1, pp. 103-114 | MR | Zbl

[11] Hassett, Brendan Special cubic fourfolds, Compos. Math., Volume 120 (2000) no. 1, pp. 1-23 | MR | DOI | Zbl

[12] Hassett, Brendan Cubic fourfolds, K3 surfaces, and rationality questions, Rationality problems in algebraic geometry (Lecture Notes in Mathematics), Volume 2172, Springer, 2016, pp. 29-66 | MR | DOI | Zbl

[13] Huybrechts, Daniel The K3 category of a cubic fourfold, Compos. Math., Volume 153 (2017) no. 3, pp. 586-620 | MR | DOI | Zbl

[14] Huybrechts, Daniel Hodge theory of cubic fourfolds, their Fano varieties, and associated K3 categories, Birational Geometry of Hypersurfaces (Lecture Notes of the Unione Matematica Italiana), Volume 26, Springer, 2019, pp. 165-198 | DOI

[15] Kontsevich, Maxim; Tschinkel, Yuri Specialization of birational types, Invent. Math., Volume 217 (2019) no. 2, pp. 415-432 | MR | DOI | Zbl

[16] Kuznetsov, Alexander Derived categories of cubic fourfolds, Cohomological and geometric approaches to rationality problems. New Perspectives (Progress in Mathematics), Volume 282, Birkhäuser, 2010, pp. 219-243 | MR | DOI | Zbl

[17] Laza, Radu The moduli space of cubic fourfolds via the period map, Ann. Math., Volume 172 (2010) no. 1, pp. 673-711 | MR | DOI | Zbl

[18] Looijenga, Eduard The period map for cubic fourfolds, Invent. Math., Volume 177 (2009) no. 1, pp. 213-233 | MR | DOI | Zbl

[19] Nikulin, Viacheslav V. Integral symmetric bilinear forms and some of their applications, Math. USSR, Izv., Volume 14 (1980), pp. 103-167 | DOI | Zbl

[20] Russo, Francesco; Staglianò, Giovanni Explicit rationality of some cubic fourfolds (2018) (https://arxiv.org/abs/1811.03502v1)

[21] Russo, Francesco; Staglianò, Giovanni Congruences of 5-secant conics and the rationality of some admissible cubic fourfolds, Duke Math. J., Volume 168 (2019) no. 5, pp. 849-865 | MR | DOI | Zbl

[22] Russo, Francesco; Staglianò, Giovanni Trisecant Flops, their associated K3 surfaces and the rationality of some Fano fourfolds (2019) (https://arxiv.org/abs/1909.01263v2)

[23] Serre, Jean-Pierre A course in arithmetic, Graduate Texts in Mathematics, 7, Springer, 1973 | MR | Zbl

[24] Voisin, Claire Théorème de Torelli pour les cubiques de 5 , Invent. Math., Volume 86 (1986), pp. 577-601 | DOI | Zbl

[25] Voisin, Claire Some aspects of the Hodge conjecture, Jpn. J. Math., Volume 2 (2007) no. 2, pp. 261-296 | MR | DOI | Zbl

Cité par Sources :