Equations aux dérivées partielles
Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kind
Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 217-235

Voir la notice de l'article provenant de la source Numdam

In this paper, we introduce some monotonicity rules for the ratio of integrals. Furthermore, we demonstrate that the function -T ν,α,β (s) is completely monotonic in s and absolutely monotonic in ν if and only if β1, where T ν,α,β (s)=K ν 2 (s)-βK ν-α (s)K ν+α (s) defined on s>0 and K ν (s) is the modified Bessel function of the second kind of order ν. Finally, we determine the necessary and sufficient conditions for the functions sT μ,α,1 (s)/T ν,α,1 (s), s(T μ,α,1 (s)+T ν,α,1 (s))/(2T (μ+ν)/2,α,1 (s)), and sd n 1 dν n 1 T ν,α,1 (s)/d n 2 dν n 2 T ν,α,1 (s) to be monotonic in s(0,) by employing the monotonicity rules.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.399
Classification : 33C10, 33B15, 26A48

Mao, Zhong-Xuan 1 ; Tian, Jing-Feng 2

1 Department of Mathematics and Physics, North China Electric Power University,Yonghua Street 619, 071003, Baoding, P. R. China
2 Department of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, 071003, Baoding, P. R. China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G1_217_0,
     author = {Mao, Zhong-Xuan and Tian, Jing-Feng},
     title = {Monotonicity and complete monotonicity of some functions involving the modified {Bessel} functions of the second kind},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {217--235},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G1},
     year = {2023},
     doi = {10.5802/crmath.399},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.399/}
}
TY  - JOUR
AU  - Mao, Zhong-Xuan
AU  - Tian, Jing-Feng
TI  - Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kind
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 217
EP  - 235
VL  - 361
IS  - G1
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.399/
DO  - 10.5802/crmath.399
LA  - en
ID  - CRMATH_2023__361_G1_217_0
ER  - 
%0 Journal Article
%A Mao, Zhong-Xuan
%A Tian, Jing-Feng
%T Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kind
%J Comptes Rendus. Mathématique
%D 2023
%P 217-235
%V 361
%N G1
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.399/
%R 10.5802/crmath.399
%G en
%F CRMATH_2023__361_G1_217_0
Mao, Zhong-Xuan; Tian, Jing-Feng. Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kind. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 217-235. doi: 10.5802/crmath.399

Cité par Sources :