Equations aux dérivées partielles
On the uniqueness of linear convection–diffusion equations with integral boundary conditions
Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 191-206

Voir la notice de l'article provenant de la source Numdam

We investigate a class of convection–diffusion equations in an expanding domain involving a parameter, where we consider integral boundary conditions that depend non-locally on unknown solutions. Generally, the uniqueness result of this type of equation is unclear. In this work, we obtain a uniqueness result when the domain is sufficiently large or small. This approach has the advantage of transforming the integral boundary conditions into new Dirichlet boundary conditions so that we can obtain refined estimates, and the comparison theorem can be applied to the equations. Furthermore, we show a domain such that under different boundary data, the equation in this domain can have infinitely numerous solutions or no solution. This work may contribute to the first understanding of the domain size’s effect on the existence and uniqueness of the linear convection–diffusion equation with integral-type boundary conditions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.396
Classification : 34B10, 34D15, 34E05, 34K26, 35J25

Lee, Chiun-Chang 1 ; Mizuno, Masashi 2 ; Moon, Sang-Hyuck 3

1 Institute for Computational and Modeling Science, National Tsing Hua University, Hsinchu 30013, Taiwan
2 Department of Mathematics, College of Science and Technology, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-8308, Japan
3 Department of Mathematical Sciences, College of Natural Sciences, Ulsan National Institute of Science and Technology, Republic of Korea
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G1_191_0,
     author = {Lee, Chiun-Chang and Mizuno, Masashi and Moon, Sang-Hyuck},
     title = {On the uniqueness of linear convection{\textendash}diffusion equations with integral boundary conditions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {191--206},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G1},
     year = {2023},
     doi = {10.5802/crmath.396},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.396/}
}
TY  - JOUR
AU  - Lee, Chiun-Chang
AU  - Mizuno, Masashi
AU  - Moon, Sang-Hyuck
TI  - On the uniqueness of linear convection–diffusion equations with integral boundary conditions
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 191
EP  - 206
VL  - 361
IS  - G1
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.396/
DO  - 10.5802/crmath.396
LA  - en
ID  - CRMATH_2023__361_G1_191_0
ER  - 
%0 Journal Article
%A Lee, Chiun-Chang
%A Mizuno, Masashi
%A Moon, Sang-Hyuck
%T On the uniqueness of linear convection–diffusion equations with integral boundary conditions
%J Comptes Rendus. Mathématique
%D 2023
%P 191-206
%V 361
%N G1
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.396/
%R 10.5802/crmath.396
%G en
%F CRMATH_2023__361_G1_191_0
Lee, Chiun-Chang; Mizuno, Masashi; Moon, Sang-Hyuck. On the uniqueness of linear convection–diffusion equations with integral boundary conditions. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 191-206. doi: 10.5802/crmath.396

Cité par Sources :