Voir la notice de l'article provenant de la source Numdam
We extend the result of Ball and Nguyen on the jump of entropy under convolution for log-concave random vectors. We show that the result holds for any pair of vectors (not necessarily identically distributed) and that a similar inequality holds for the Fisher information, thus providing a quantitative Blachmann–Stam inequality.
Bizeul, Pierre 1
@article{CRMATH_2023__361_G2_487_0, author = {Bizeul, Pierre}, title = {Entropy and {Information} jump for log-concave vectors}, journal = {Comptes Rendus. Math\'ematique}, pages = {487--493}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G2}, year = {2023}, doi = {10.5802/crmath.390}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.390/} }
TY - JOUR AU - Bizeul, Pierre TI - Entropy and Information jump for log-concave vectors JO - Comptes Rendus. Mathématique PY - 2023 SP - 487 EP - 493 VL - 361 IS - G2 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.390/ DO - 10.5802/crmath.390 LA - en ID - CRMATH_2023__361_G2_487_0 ER -
%0 Journal Article %A Bizeul, Pierre %T Entropy and Information jump for log-concave vectors %J Comptes Rendus. Mathématique %D 2023 %P 487-493 %V 361 %N G2 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.390/ %R 10.5802/crmath.390 %G en %F CRMATH_2023__361_G2_487_0
Bizeul, Pierre. Entropy and Information jump for log-concave vectors. Comptes Rendus. Mathématique, Tome 361 (2023) no. G2, pp. 487-493. doi: 10.5802/crmath.390
Cité par Sources :