Voir la notice de l'article provenant de la source Numdam
Let be an imaginary quadratic field where splits. We study signed Selmer groups for non-ordinary modular forms over the anticyclotomic -extension of , showing that one inclusion of an Iwasawa main conjecture involving the -adic -function of Bertolini–Darmon–Prasanna implies that their -invariants vanish. This gives an alternative method to reprove a recent result of Matar on the vanishing of the -invariants of plus and minus signed Selmer groups for elliptic curves.
Hatley, Jeffrey 1 ; Lei, Antonio 2
@article{CRMATH_2023__361_G1_65_0, author = {Hatley, Jeffrey and Lei, Antonio}, title = {The vanishing of anticyclotomic $\mu $-invariants for non-ordinary modular forms}, journal = {Comptes Rendus. Math\'ematique}, pages = {65--72}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G1}, year = {2023}, doi = {10.5802/crmath.389}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.389/} }
TY - JOUR AU - Hatley, Jeffrey AU - Lei, Antonio TI - The vanishing of anticyclotomic $\mu $-invariants for non-ordinary modular forms JO - Comptes Rendus. Mathématique PY - 2023 SP - 65 EP - 72 VL - 361 IS - G1 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.389/ DO - 10.5802/crmath.389 LA - en ID - CRMATH_2023__361_G1_65_0 ER -
%0 Journal Article %A Hatley, Jeffrey %A Lei, Antonio %T The vanishing of anticyclotomic $\mu $-invariants for non-ordinary modular forms %J Comptes Rendus. Mathématique %D 2023 %P 65-72 %V 361 %N G1 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.389/ %R 10.5802/crmath.389 %G en %F CRMATH_2023__361_G1_65_0
Hatley, Jeffrey; Lei, Antonio. The vanishing of anticyclotomic $\mu $-invariants for non-ordinary modular forms. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 65-72. doi: 10.5802/crmath.389
Cité par Sources :