Analyse fonctionnelle, Équations aux dérivées partielles
An elementary approach to the homological properties of constant-rank operators
Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 45-63

Voir la notice de l'article provenant de la source Numdam

We give a simple and constructive extension of Raiță’s result that every constant-rank operator possesses an exact potential and an exact annihilator. Our construction is completely self-contained and provides an improvement over the order of the operators constructed by Raiță and the order of the explicit annihilators for elliptic operators due to Van Schaftingen. We also give an abstract construction of an optimal annihilator for constant-rank operators, which extends the optimal construction of Van Schaftingen for elliptic operators. Lastly, we discuss the homological properties of operators in relation to the homological properties of their associated symbols. We establish that the constant-rank property is a sufficient and necessary condition for the validity of a generalized Poincaré lemma on spaces of homogeneous maps over d , and we prove that the existence of potentials on spaces of periodic maps requires a strictly weaker condition than the constant-rank property.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.388
Classification : 35E20, 47F10, 13D02

Arroyo-Rabasa, Adolfo 1 ; Simental, José 2

1 Université catholique de Louvain, Institut de Recherche en Mathématique et Physique, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium
2 Instituto de Matemáticas, Universidad Nacional Autónoma de México. Ciudad Universitaria, Mexico City, Mexico
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G1_45_0,
     author = {Arroyo-Rabasa, Adolfo and Simental, Jos\'e},
     title = {An elementary approach to the homological properties of constant-rank operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {45--63},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G1},
     year = {2023},
     doi = {10.5802/crmath.388},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.388/}
}
TY  - JOUR
AU  - Arroyo-Rabasa, Adolfo
AU  - Simental, José
TI  - An elementary approach to the homological properties of constant-rank operators
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 45
EP  - 63
VL  - 361
IS  - G1
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.388/
DO  - 10.5802/crmath.388
LA  - en
ID  - CRMATH_2023__361_G1_45_0
ER  - 
%0 Journal Article
%A Arroyo-Rabasa, Adolfo
%A Simental, José
%T An elementary approach to the homological properties of constant-rank operators
%J Comptes Rendus. Mathématique
%D 2023
%P 45-63
%V 361
%N G1
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.388/
%R 10.5802/crmath.388
%G en
%F CRMATH_2023__361_G1_45_0
Arroyo-Rabasa, Adolfo; Simental, José. An elementary approach to the homological properties of constant-rank operators. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 45-63. doi: 10.5802/crmath.388

Cité par Sources :