Voir la notice de l'article provenant de la source Numdam
In this work we show that for any topological space having the homotopy type of a CW-complex and for any commutative ring , the singular cohomology is a Gerstenhaber algebra (see. [7]). In fact we prove that satisfies the conditions of a generalization of the Gerstenhaber algebras.
Battikh, Naoufel 1
@article{CRMATH_2023__361_G1_31_0, author = {Battikh, Naoufel}, title = {Formes diff\'erentielles non commutatives et {Alg\`ebres} de {Gerstenhaber}}, journal = {Comptes Rendus. Math\'ematique}, pages = {31--44}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G1}, year = {2023}, doi = {10.5802/crmath.386}, language = {fr}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.386/} }
TY - JOUR AU - Battikh, Naoufel TI - Formes différentielles non commutatives et Algèbres de Gerstenhaber JO - Comptes Rendus. Mathématique PY - 2023 SP - 31 EP - 44 VL - 361 IS - G1 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.386/ DO - 10.5802/crmath.386 LA - fr ID - CRMATH_2023__361_G1_31_0 ER -
%0 Journal Article %A Battikh, Naoufel %T Formes différentielles non commutatives et Algèbres de Gerstenhaber %J Comptes Rendus. Mathématique %D 2023 %P 31-44 %V 361 %N G1 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.386/ %R 10.5802/crmath.386 %G fr %F CRMATH_2023__361_G1_31_0
Battikh, Naoufel. Formes différentielles non commutatives et Algèbres de Gerstenhaber. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 31-44. doi: 10.5802/crmath.386
Cité par Sources :