Voir la notice de l'article provenant de la source Numdam
In this short note we construct two families of examples of large stratifying systems in module categories of algebras. The first examples consist on stratifying systems of infinite size in the module category of an algebra . In the second family of examples we show that the size of a finite stratifying system in the module category of a finite dimensional algebra can be arbitrarily large in comparison to the number of isomorphism classes of simple -modules. We note that both families of examples are built using well-established results in higher homological algebra.
Treffinger, Hipolito 1
@article{CRMATH_2023__361_G1_15_0, author = {Treffinger, Hipolito}, title = {The size of a stratifying system can be arbitrarily large}, journal = {Comptes Rendus. Math\'ematique}, pages = {15--19}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G1}, year = {2023}, doi = {10.5802/crmath.385}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.385/} }
TY - JOUR AU - Treffinger, Hipolito TI - The size of a stratifying system can be arbitrarily large JO - Comptes Rendus. Mathématique PY - 2023 SP - 15 EP - 19 VL - 361 IS - G1 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.385/ DO - 10.5802/crmath.385 LA - en ID - CRMATH_2023__361_G1_15_0 ER -
%0 Journal Article %A Treffinger, Hipolito %T The size of a stratifying system can be arbitrarily large %J Comptes Rendus. Mathématique %D 2023 %P 15-19 %V 361 %N G1 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.385/ %R 10.5802/crmath.385 %G en %F CRMATH_2023__361_G1_15_0
Treffinger, Hipolito. The size of a stratifying system can be arbitrarily large. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 15-19. doi: 10.5802/crmath.385
Cité par Sources :