Algèbre, Théorie des représentations
The size of a stratifying system can be arbitrarily large
Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 15-19

Voir la notice de l'article provenant de la source Numdam

In this short note we construct two families of examples of large stratifying systems in module categories of algebras. The first examples consist on stratifying systems of infinite size in the module category of an algebra A. In the second family of examples we show that the size of a finite stratifying system in the module category of a finite dimensional algebra A can be arbitrarily large in comparison to the number of isomorphism classes of simple A-modules. We note that both families of examples are built using well-established results in higher homological algebra.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.385

Treffinger, Hipolito 1

1 Institut de Mathématiques Jussieu - Paris Rive Gauge, Université Paris Cité. Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G1_15_0,
     author = {Treffinger, Hipolito},
     title = {The size of a stratifying system can be arbitrarily large},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {15--19},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G1},
     year = {2023},
     doi = {10.5802/crmath.385},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.385/}
}
TY  - JOUR
AU  - Treffinger, Hipolito
TI  - The size of a stratifying system can be arbitrarily large
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 15
EP  - 19
VL  - 361
IS  - G1
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.385/
DO  - 10.5802/crmath.385
LA  - en
ID  - CRMATH_2023__361_G1_15_0
ER  - 
%0 Journal Article
%A Treffinger, Hipolito
%T The size of a stratifying system can be arbitrarily large
%J Comptes Rendus. Mathématique
%D 2023
%P 15-19
%V 361
%N G1
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.385/
%R 10.5802/crmath.385
%G en
%F CRMATH_2023__361_G1_15_0
Treffinger, Hipolito. The size of a stratifying system can be arbitrarily large. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 15-19. doi: 10.5802/crmath.385

Cité par Sources :