Voir la notice de l'article provenant de la source Numdam
Let be a non-constant complex-valued analytic function defined on a connected, open set containing the -spectrum of the Laplacian on a homogeneous tree. In this paper we give a necessary and sufficient condition for the semigroup to be chaotic on -spaces. We also study the chaotic dynamics of the semigroup separately and obtain a sharp range of for which is chaotic on -spaces. It includes some of the important semigroups such as the heat semigroup and the Schrödinger semigroup.
Kumar, Pratyoosh 1 ; Rano, Sumit Kumar 1
@article{CRMATH_2023__361_G1_1_0, author = {Kumar, Pratyoosh and Rano, Sumit Kumar}, title = {Dynamics of semigroups generated by analytic functions of the {Laplacian} on {Homogeneous} {Trees}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1--13}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G1}, year = {2023}, doi = {10.5802/crmath.382}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.382/} }
TY - JOUR AU - Kumar, Pratyoosh AU - Rano, Sumit Kumar TI - Dynamics of semigroups generated by analytic functions of the Laplacian on Homogeneous Trees JO - Comptes Rendus. Mathématique PY - 2023 SP - 1 EP - 13 VL - 361 IS - G1 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.382/ DO - 10.5802/crmath.382 LA - en ID - CRMATH_2023__361_G1_1_0 ER -
%0 Journal Article %A Kumar, Pratyoosh %A Rano, Sumit Kumar %T Dynamics of semigroups generated by analytic functions of the Laplacian on Homogeneous Trees %J Comptes Rendus. Mathématique %D 2023 %P 1-13 %V 361 %N G1 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.382/ %R 10.5802/crmath.382 %G en %F CRMATH_2023__361_G1_1_0
Kumar, Pratyoosh; Rano, Sumit Kumar. Dynamics of semigroups generated by analytic functions of the Laplacian on Homogeneous Trees. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 1-13. doi: 10.5802/crmath.382
Cité par Sources :