Voir la notice de l'article provenant de la source Numdam
This paper concerns the energy conservation for the weak solutions to the Navier–Stokes–Maxwell system. Although the Maxwell equation with hyperbolic nature, we still establish a type condition guarantee validity of the energy equality for the weak solutions. We mention that there no regularity assumption on the electric field .
Ma, Dandan 1 ; Wu, Fan 1
@article{CRMATH_2023__361_G1_91_0, author = {Ma, Dandan and Wu, Fan}, title = {Shinbrot{\textquoteright}s energy conservation criterion for the {3D} {Navier{\textendash}Stokes{\textendash}Maxwell} system}, journal = {Comptes Rendus. Math\'ematique}, pages = {91--96}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G1}, year = {2023}, doi = {10.5802/crmath.379}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.379/} }
TY - JOUR AU - Ma, Dandan AU - Wu, Fan TI - Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system JO - Comptes Rendus. Mathématique PY - 2023 SP - 91 EP - 96 VL - 361 IS - G1 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.379/ DO - 10.5802/crmath.379 LA - en ID - CRMATH_2023__361_G1_91_0 ER -
%0 Journal Article %A Ma, Dandan %A Wu, Fan %T Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system %J Comptes Rendus. Mathématique %D 2023 %P 91-96 %V 361 %N G1 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.379/ %R 10.5802/crmath.379 %G en %F CRMATH_2023__361_G1_91_0
Ma, Dandan; Wu, Fan. Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 91-96. doi: 10.5802/crmath.379
Cité par Sources :