Voir la notice de l'article provenant de la source Numdam
We consider operators acting on a UMD Banach lattice that have the same algebraic structure as the position and momentum operators associated with the harmonic oscillator acting on . More precisely, we consider abstract harmonic oscillators of the form for tuples of operators and , where and are assumed to generate groups and to satisfy the canonical commutator relations. We prove functional calculus results for these abstract harmonic oscillators that match classical Hörmander spectral multiplier estimates for the harmonic oscillator on . This covers situations where the underlying metric measure space is not doubling and the use of function spaces that are not particularly well suited to extrapolation arguments. For instance, as an application we treat the harmonic oscillator on mixed norm Bargmann–Fock spaces. Our approach is based on a transference principle for the Schrödinger representation of the Heisenberg group that allows us to reduce the problem to the study of the twisted Laplacian on the Bochner spaces . This can be seen as a generalisation of the Stone–von Neumann theorem to UMD lattices that are not Hilbert spaces.
van Neerven, Jan 1 ; Portal, Pierre 2 ; Sharma, Himani 3
@article{CRMATH_2023__361_G5_835_0, author = {van Neerven, Jan and Portal, Pierre and Sharma, Himani}, title = {Spectral multiplier theorems for abstract harmonic oscillators on {UMD} lattices}, journal = {Comptes Rendus. Math\'ematique}, pages = {835--846}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G5}, year = {2023}, doi = {10.5802/crmath.370}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.370/} }
TY - JOUR AU - van Neerven, Jan AU - Portal, Pierre AU - Sharma, Himani TI - Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices JO - Comptes Rendus. Mathématique PY - 2023 SP - 835 EP - 846 VL - 361 IS - G5 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.370/ DO - 10.5802/crmath.370 LA - en ID - CRMATH_2023__361_G5_835_0 ER -
%0 Journal Article %A van Neerven, Jan %A Portal, Pierre %A Sharma, Himani %T Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices %J Comptes Rendus. Mathématique %D 2023 %P 835-846 %V 361 %N G5 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.370/ %R 10.5802/crmath.370 %G en %F CRMATH_2023__361_G5_835_0
van Neerven, Jan; Portal, Pierre; Sharma, Himani. Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices. Comptes Rendus. Mathématique, Tome 361 (2023) no. G5, pp. 835-846. doi: 10.5802/crmath.370
Cité par Sources :