Analyse fonctionnelle, Analyse harmonique
Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices
Comptes Rendus. Mathématique, Tome 361 (2023) no. G5, pp. 835-846

Voir la notice de l'article provenant de la source Numdam

We consider operators acting on a UMD Banach lattice X that have the same algebraic structure as the position and momentum operators associated with the harmonic oscillator -1 2Δ+1 2|x| 2 acting on L 2 ( d ). More precisely, we consider abstract harmonic oscillators of the form 1 2 j=1 d (A j 2 +B j 2 ) for tuples of operators A=(A j ) j=1 d and B=(B k ) k=1 d , where iA j and iB k are assumed to generate C 0 groups and to satisfy the canonical commutator relations. We prove functional calculus results for these abstract harmonic oscillators that match classical Hörmander spectral multiplier estimates for the harmonic oscillator -1 2Δ+1 2|x| 2 on L p ( d ). This covers situations where the underlying metric measure space is not doubling and the use of function spaces that are not particularly well suited to extrapolation arguments. For instance, as an application we treat the harmonic oscillator on mixed norm Bargmann–Fock spaces. Our approach is based on a transference principle for the Schrödinger representation of the Heisenberg group that allows us to reduce the problem to the study of the twisted Laplacian on the Bochner spaces L 2 ( 2d ;X). This can be seen as a generalisation of the Stone–von Neumann theorem to UMD lattices X that are not Hilbert spaces.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.370
Classification : 47A60, 42B15, 43A80, 47A13, 47D03, 47G30, 81S05
Keywords: spectral multipliers, harmonic oscillator, twisted convolutions, canonical commutation relations, Weyl pseudo-differential calculus, UMD spaces, transference, $H^\infty $-calculus, Hörmander calculus

van Neerven, Jan 1 ; Portal, Pierre 2 ; Sharma, Himani 3

1 Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
2 The Australian National University, Mathematical Sciences Institute, Hanna Neumann Building, Ngunnawal and Ngambri Country, Canberra ACT 2601, Australia
3 The Australian National University, Mathematical Sciences Institute, Hanna Neumann Building, Ngunnawal and Ngambri Country, Canberra ACT 2601, Australia.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G5_835_0,
     author = {van Neerven, Jan and Portal, Pierre and Sharma, Himani},
     title = {Spectral multiplier theorems for abstract harmonic oscillators on {UMD} lattices},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {835--846},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G5},
     year = {2023},
     doi = {10.5802/crmath.370},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.370/}
}
TY  - JOUR
AU  - van Neerven, Jan
AU  - Portal, Pierre
AU  - Sharma, Himani
TI  - Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 835
EP  - 846
VL  - 361
IS  - G5
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.370/
DO  - 10.5802/crmath.370
LA  - en
ID  - CRMATH_2023__361_G5_835_0
ER  - 
%0 Journal Article
%A van Neerven, Jan
%A Portal, Pierre
%A Sharma, Himani
%T Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices
%J Comptes Rendus. Mathématique
%D 2023
%P 835-846
%V 361
%N G5
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.370/
%R 10.5802/crmath.370
%G en
%F CRMATH_2023__361_G5_835_0
van Neerven, Jan; Portal, Pierre; Sharma, Himani. Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices. Comptes Rendus. Mathématique, Tome 361 (2023) no. G5, pp. 835-846. doi: 10.5802/crmath.370

Cité par Sources :