Equations aux dérivées partielles
Unbounded-energy solutions to the fluid+disk system and long-time behavior for large initial data
Comptes Rendus. Mathématique, Tome 361 (2023) no. G2, pp. 453-485

Voir la notice de l'article provenant de la source Numdam

In this paper, we analyse the long-time behavior of solutions to a coupled system describing the motion of a rigid disk in a 2D viscous incompressible fluid. Following previous approaches in [4, 15, 17] we look at the problem in the system of coordinates associated with the center of mass of the disk. Doing so, we introduce a further nonlinearity to the classical Navier Stokes equations. In comparison with the classical nonlinearities, this new term lacks time and space integrability, thus complicating strongly the analysis of the long-time behavior of solutions.

We provide herein two refined tools: a refined analysis of the Gagliardo–Nirenberg inequalities and a thorough description of fractional powers of the so-called fluid-structure operator [2]. On the basis of these two tools we extend decay estimates obtained in [4] to arbitrary initial data and show local stability of the Lamb-Oseen vortex in the spirit of [7, 8].

Reçu le :
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/crmath.357

Ferriere, Guillaume 1 ; Hillairet, Matthieu 2

1 Institut de Recherche Mathématique Avancée, UMR 7501 Université de Strasbourg et CNRS, France
2 IMAG, Univ Montpellier, CNRS, Montpellier, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G2_453_0,
     author = {Ferriere, Guillaume and Hillairet, Matthieu},
     title = {Unbounded-energy solutions to the fluid+disk system and long-time behavior for large initial data},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {453--485},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G2},
     year = {2023},
     doi = {10.5802/crmath.357},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.357/}
}
TY  - JOUR
AU  - Ferriere, Guillaume
AU  - Hillairet, Matthieu
TI  - Unbounded-energy solutions to the fluid+disk system and long-time behavior for large initial data
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 453
EP  - 485
VL  - 361
IS  - G2
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.357/
DO  - 10.5802/crmath.357
LA  - en
ID  - CRMATH_2023__361_G2_453_0
ER  - 
%0 Journal Article
%A Ferriere, Guillaume
%A Hillairet, Matthieu
%T Unbounded-energy solutions to the fluid+disk system and long-time behavior for large initial data
%J Comptes Rendus. Mathématique
%D 2023
%P 453-485
%V 361
%N G2
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.357/
%R 10.5802/crmath.357
%G en
%F CRMATH_2023__361_G2_453_0
Ferriere, Guillaume; Hillairet, Matthieu. Unbounded-energy solutions to the fluid+disk system and long-time behavior for large initial data. Comptes Rendus. Mathématique, Tome 361 (2023) no. G2, pp. 453-485. doi: 10.5802/crmath.357

Cité par Sources :