Voir la notice de l'article provenant de la source Numdam
We estimate best-approximation errors using vector-valued finite elements for fields with low regularity in the scale of the fractional-order Sobolev spaces. By assuming that the target field enjoys an additional integrability property on its curl or its divergence, we establish upper bounds on these errors that can be localized to the mesh cells. These bounds are derived using the quasi-interpolation errors with or without boundary prescription derived in [A. Ern and J.-L. Guermond, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 1367–1385]. In the present work, a localized upper bound on the quasi-interpolation error is derived by using the face-to-cell lifting operators analyzed in [A. Ern and J.-L. Guermond, Found. Comput. Math., (2021)] and by exploiting the additional assumption made on the curl or the divergence of the target field. As an illustration, we show how to apply these results to the error analysis of the curl-curl problem associated with Maxwell’s equations.
Dong, Zhaonan 1, 2 ; Ern, Alexandre 2, 1 ; Guermond, Jean-Luc 3
@article{CRMATH_2023__361_G4_723_0, author = {Dong, Zhaonan and Ern, Alexandre and Guermond, Jean-Luc}, title = {Local decay rates of best-approximation errors using vector-valued finite elements for fields with low regularity and integrable curl or divergence}, journal = {Comptes Rendus. Math\'ematique}, pages = {723--736}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G4}, year = {2023}, doi = {10.5802/crmath.347}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.347/} }
TY - JOUR AU - Dong, Zhaonan AU - Ern, Alexandre AU - Guermond, Jean-Luc TI - Local decay rates of best-approximation errors using vector-valued finite elements for fields with low regularity and integrable curl or divergence JO - Comptes Rendus. Mathématique PY - 2023 SP - 723 EP - 736 VL - 361 IS - G4 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.347/ DO - 10.5802/crmath.347 LA - en ID - CRMATH_2023__361_G4_723_0 ER -
%0 Journal Article %A Dong, Zhaonan %A Ern, Alexandre %A Guermond, Jean-Luc %T Local decay rates of best-approximation errors using vector-valued finite elements for fields with low regularity and integrable curl or divergence %J Comptes Rendus. Mathématique %D 2023 %P 723-736 %V 361 %N G4 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.347/ %R 10.5802/crmath.347 %G en %F CRMATH_2023__361_G4_723_0
Dong, Zhaonan; Ern, Alexandre; Guermond, Jean-Luc. Local decay rates of best-approximation errors using vector-valued finite elements for fields with low regularity and integrable curl or divergence. Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 723-736. doi: 10.5802/crmath.347
Cité par Sources :