Analyse numérique
Local decay rates of best-approximation errors using vector-valued finite elements for fields with low regularity and integrable curl or divergence
Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 723-736

Voir la notice de l'article provenant de la source Numdam

We estimate best-approximation errors using vector-valued finite elements for fields with low regularity in the scale of the fractional-order Sobolev spaces. By assuming that the target field enjoys an additional integrability property on its curl or its divergence, we establish upper bounds on these errors that can be localized to the mesh cells. These bounds are derived using the quasi-interpolation errors with or without boundary prescription derived in [A. Ern and J.-L. Guermond, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 1367–1385]. In the present work, a localized upper bound on the quasi-interpolation error is derived by using the face-to-cell lifting operators analyzed in [A. Ern and J.-L. Guermond, Found. Comput. Math., (2021)] and by exploiting the additional assumption made on the curl or the divergence of the target field. As an illustration, we show how to apply these results to the error analysis of the curl-curl problem associated with Maxwell’s equations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.347
Classification : 65D05, 65N30, 41A65

Dong, Zhaonan 1, 2 ; Ern, Alexandre 2, 1 ; Guermond, Jean-Luc 3

1 Inria, 2 rue Simone Iff, 75589 Paris, France
2 CERMICS, Ecole des Ponts, 77455 Marne-la-Vallée, France
3 Department of Mathematics, Texas A&M University, 3368 TAMU, College Station, TX 77843, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G4_723_0,
     author = {Dong, Zhaonan and Ern, Alexandre and Guermond, Jean-Luc},
     title = {Local decay rates of best-approximation errors using vector-valued finite elements for fields with low regularity and integrable curl or divergence},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {723--736},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G4},
     year = {2023},
     doi = {10.5802/crmath.347},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.347/}
}
TY  - JOUR
AU  - Dong, Zhaonan
AU  - Ern, Alexandre
AU  - Guermond, Jean-Luc
TI  - Local decay rates of best-approximation errors using vector-valued finite elements for fields with low regularity and integrable curl or divergence
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 723
EP  - 736
VL  - 361
IS  - G4
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.347/
DO  - 10.5802/crmath.347
LA  - en
ID  - CRMATH_2023__361_G4_723_0
ER  - 
%0 Journal Article
%A Dong, Zhaonan
%A Ern, Alexandre
%A Guermond, Jean-Luc
%T Local decay rates of best-approximation errors using vector-valued finite elements for fields with low regularity and integrable curl or divergence
%J Comptes Rendus. Mathématique
%D 2023
%P 723-736
%V 361
%N G4
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.347/
%R 10.5802/crmath.347
%G en
%F CRMATH_2023__361_G4_723_0
Dong, Zhaonan; Ern, Alexandre; Guermond, Jean-Luc. Local decay rates of best-approximation errors using vector-valued finite elements for fields with low regularity and integrable curl or divergence. Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 723-736. doi: 10.5802/crmath.347

Cité par Sources :