Combinatoire
Finiteness of rank for Grassmann convexity
[Finitude de rang pour la connexité du Grassmannien]
Comptes Rendus. Mathématique, Tome 361 (2023) no. G2, pp. 445-451

Voir la notice de l'article provenant de la source Numdam

The Grassmann convexity conjecture, formulated in [8], gives a conjectural formula for the maximal total number of real zeroes of the consecutive Wronskians of an arbitrary fundamental solution to a disconjugate linear ordinary differential equation with real time. The conjecture can be reformulated in terms of convex curves in the nilpotent lower triangular group. The formula has already been shown to be a correct lower bound and to give a correct upper bound in several small dimensional cases. In this paper we obtain a general explicit upper bound.

La conjecture sur la convexité du Grassmannien formulée dans [8] suggère une formule pour le nombre total maximal de zéros réels des Wronskiens consécutifs d’une solution fondamentale arbitraire d’un système disconjugué d’équations différentielles ordinaires linéaires à temps réel. La conjecture peut être formulée en termes de courbes convexes dans le groupe nilpotent triangulaire inférieur. Il a déjà été prouvé que la formule donne une borne inférieure correcte et que dans plusieurs cas de basse dimension, elle donne la borne supérieure correcte. Dans cet article nous obtenons une borne supérieure explicite générale.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.343
Classification : 34C10, 05B30, 57N80

Saldanha, Nicolau 1 ; Shapiro, Boris 2 ; Shapiro, Michael 3, 4

1 Departamento de Matemática, PUC-Rio, R. Mq. de S. Vicente 225, Rio de Janeiro, RJ 22451-900, Brazil
2 Department of Mathematics, Stockholm University, SE-106 91, Stockholm, Sweden
3 Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027, USA
4 National Research University Higher School of Economics, Moscow, Russia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G2_445_0,
     author = {Saldanha, Nicolau and Shapiro, Boris and Shapiro, Michael},
     title = {Finiteness of rank for {Grassmann} convexity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {445--451},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G2},
     year = {2023},
     doi = {10.5802/crmath.343},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.343/}
}
TY  - JOUR
AU  - Saldanha, Nicolau
AU  - Shapiro, Boris
AU  - Shapiro, Michael
TI  - Finiteness of rank for Grassmann convexity
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 445
EP  - 451
VL  - 361
IS  - G2
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.343/
DO  - 10.5802/crmath.343
LA  - en
ID  - CRMATH_2023__361_G2_445_0
ER  - 
%0 Journal Article
%A Saldanha, Nicolau
%A Shapiro, Boris
%A Shapiro, Michael
%T Finiteness of rank for Grassmann convexity
%J Comptes Rendus. Mathématique
%D 2023
%P 445-451
%V 361
%N G2
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.343/
%R 10.5802/crmath.343
%G en
%F CRMATH_2023__361_G2_445_0
Saldanha, Nicolau; Shapiro, Boris; Shapiro, Michael. Finiteness of rank for Grassmann convexity. Comptes Rendus. Mathématique, Tome 361 (2023) no. G2, pp. 445-451. doi: 10.5802/crmath.343

Cité par Sources :