Voir la notice de l'article provenant de la source Numdam
Let be the set of all positive integers such that the denominator of is less than the least common multiple of . In this paper, under a certain assumption on linear independence, we prove that the set has the upper asymptotic density . The assumption follows from Schanuel’s conjecture.
Wu, Bing-Ling 1 ; Yan, Xiao-Hui 2
@article{CRMATH_2022__360_G1_53_0, author = {Wu, Bing-Ling and Yan, Xiao-Hui}, title = {On the denominators of harmonic numbers. {IV}}, journal = {Comptes Rendus. Math\'ematique}, pages = {53--57}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G1}, year = {2022}, doi = {10.5802/crmath.282}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.282/} }
TY - JOUR AU - Wu, Bing-Ling AU - Yan, Xiao-Hui TI - On the denominators of harmonic numbers. IV JO - Comptes Rendus. Mathématique PY - 2022 SP - 53 EP - 57 VL - 360 IS - G1 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.282/ DO - 10.5802/crmath.282 LA - en ID - CRMATH_2022__360_G1_53_0 ER -
%0 Journal Article %A Wu, Bing-Ling %A Yan, Xiao-Hui %T On the denominators of harmonic numbers. IV %J Comptes Rendus. Mathématique %D 2022 %P 53-57 %V 360 %N G1 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.282/ %R 10.5802/crmath.282 %G en %F CRMATH_2022__360_G1_53_0
Wu, Bing-Ling; Yan, Xiao-Hui. On the denominators of harmonic numbers. IV. Comptes Rendus. Mathématique, Tome 360 (2022) no. G1, pp. 53-57. doi : 10.5802/crmath.282. http://geodesic.mathdoc.fr/articles/10.5802/crmath.282/
[1] A -adic study of the partial sums of the harmonic series, Exp. Math., Volume 3 (1994) no. 4, pp. 287-302 | DOI | MR | Zbl
[2] -integral harmonic sums, Discrete Math., Volume 91 (1991) no. 3, pp. 249-257 | DOI | MR | Zbl
[3] An introduction to the theory of numbers, Oxford University Press, 1979
[4] Introduction to transcendental numbers, Addison-Wesley Series in Mathematics, Addison-Wesley Publishing Group, 1966
[5] On the -adic valuation of harmonic numbers, J. Number Theory, Volume 166 (2016), pp. 41-46 | DOI | MR | Zbl
[6] The denominators of harmonic numbers (2016) (https://arxiv.org/abs/1607.02863v1)
[7] On certain properties of harmonic numbers, J. Number Theory, Volume 175 (2017), pp. 66-86 | MR | Zbl
[8] On the denominators of harmonic numbers, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 2, pp. 129-132 | MR | Zbl
[9] On the denominators of harmonic numbers. II, J. Number Theory, Volume 200 (2019), pp. 397-406 | MR | Zbl
Cité par Sources :