Équations aux dérivées partielles
Some stability inequalities for hybrid inverse problems
Comptes Rendus. Mathématique, Tome 359 (2021) no. 10, pp. 1251-1265 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

We study some hybrid inverse problems associated to BVP’s for Schrödinger and Helmholtz type equations. The inverse problems we consider consist in the determination of coefficients from the knowledge of internal energy densities. We establish local Lipschitz stability inequalities as well as Hölder stability inequalities.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.262
Classification : 35R30

Choulli, Mourad 1

1 Université de Lorraine, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2021__359_10_1251_0,
     author = {Choulli, Mourad},
     title = {Some stability inequalities for hybrid inverse problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1251--1265},
     year = {2021},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {10},
     doi = {10.5802/crmath.262},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.262/}
}
TY  - JOUR
AU  - Choulli, Mourad
TI  - Some stability inequalities for hybrid inverse problems
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 1251
EP  - 1265
VL  - 359
IS  - 10
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.262/
DO  - 10.5802/crmath.262
LA  - en
ID  - CRMATH_2021__359_10_1251_0
ER  - 
%0 Journal Article
%A Choulli, Mourad
%T Some stability inequalities for hybrid inverse problems
%J Comptes Rendus. Mathématique
%D 2021
%P 1251-1265
%V 359
%N 10
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.262/
%R 10.5802/crmath.262
%G en
%F CRMATH_2021__359_10_1251_0
Choulli, Mourad. Some stability inequalities for hybrid inverse problems. Comptes Rendus. Mathématique, Tome 359 (2021) no. 10, pp. 1251-1265. doi: 10.5802/crmath.262

Cité par Sources :