Physique mathématique, Théorie spectrale
Spectral properties of periodic systems cut at an angle
Comptes Rendus. Mathématique, Tome 359 (2021) no. 8, pp. 949-958 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

We consider a semi-periodic two-dimensional Schrödinger operator which is cut at an angle. When the cut is commensurate with the periodic lattice, the spectrum of the operator has the band-gap Bloch structure. We prove that in the incommensurable case, there are no gaps: the gaps of the bulk operator are filled with edge spectrum.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.251

Gontier, David 1

1 CEREMADE, University of Paris-Dauphine, PSL University, 75016 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2021__359_8_949_0,
     author = {Gontier, David},
     title = {Spectral properties of periodic systems cut at an angle},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {949--958},
     year = {2021},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {8},
     doi = {10.5802/crmath.251},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.251/}
}
TY  - JOUR
AU  - Gontier, David
TI  - Spectral properties of periodic systems cut at an angle
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 949
EP  - 958
VL  - 359
IS  - 8
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.251/
DO  - 10.5802/crmath.251
LA  - en
ID  - CRMATH_2021__359_8_949_0
ER  - 
%0 Journal Article
%A Gontier, David
%T Spectral properties of periodic systems cut at an angle
%J Comptes Rendus. Mathématique
%D 2021
%P 949-958
%V 359
%N 8
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.251/
%R 10.5802/crmath.251
%G en
%F CRMATH_2021__359_8_949_0
Gontier, David. Spectral properties of periodic systems cut at an angle. Comptes Rendus. Mathématique, Tome 359 (2021) no. 8, pp. 949-958. doi: 10.5802/crmath.251

Cité par Sources :