Voir la notice de l'article provenant de la source Numdam
We obtain several convexity statements involving positive definite matrices. In particular, if are invertible matrices and are positive, we show that the map
is jointly convex on . This is related to some exotic matrix Hölder inequalities such as
for all positive matrices , such that , conjugate exponents and unitarily invariant norms . Our approach to obtain these results consists in studying the behaviour of some functionals along the geodesics of the Riemanian manifold of positive definite matrices.
Bourin, Jean-Christophe 1 ; Shao, Jingjing 2
@article{CRMATH_2020__358_6_645_0, author = {Bourin, Jean-Christophe and Shao, Jingjing}, title = {Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices}, journal = {Comptes Rendus. Math\'ematique}, pages = {645--649}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {6}, year = {2020}, doi = {10.5802/crmath.25}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.25/} }
TY - JOUR AU - Bourin, Jean-Christophe AU - Shao, Jingjing TI - Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices JO - Comptes Rendus. Mathématique PY - 2020 SP - 645 EP - 649 VL - 358 IS - 6 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.25/ DO - 10.5802/crmath.25 LA - en ID - CRMATH_2020__358_6_645_0 ER -
%0 Journal Article %A Bourin, Jean-Christophe %A Shao, Jingjing %T Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices %J Comptes Rendus. Mathématique %D 2020 %P 645-649 %V 358 %N 6 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.25/ %R 10.5802/crmath.25 %G en %F CRMATH_2020__358_6_645_0
Bourin, Jean-Christophe; Shao, Jingjing. Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices. Comptes Rendus. Mathématique, Tome 358 (2020) no. 6, pp. 645-649. doi : 10.5802/crmath.25. http://geodesic.mathdoc.fr/articles/10.5802/crmath.25/
[1] Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl., Volume 26 (1979), pp. 203-241 | MR | DOI | Zbl
[2] Matrix Analysis, Graduate Texts in Mathematics, 169, Springer, 1996 | Zbl
[3] Positive Definite Matrices, Princeton Series in Applied Mathematics, Princeton University Press, 2007 | Zbl
[4] Matrix inequalities from a two variables functional, Int. J. Math., Volume 27 (2016) no. 9, 16500771, 19 pages | MR | Zbl
[5] Convexity according to the geometric mean, Math. Inequal. Appl., Volume 3 (2000) no. 2, pp. 155-167 | MR | Zbl
Cité par Sources :