Combinatoire, Théorie des nombres
Determinants concerning Legendre symbols
Comptes Rendus. Mathématique, Tome 359 (2021) no. 6, pp. 651-655.

Voir la notice de l'article provenant de la source Numdam

The evaluations of determinants with Legendre symbol entries have close relation with combinatorics and character sums over finite fields. Recently, Sun [9] posed some conjectures on this topic. In this paper, we prove some conjectures of Sun and also study some variants. For example, we show the following result:

Let p=a 2 +4b 2 be a prime with a,b integers and a1(mod4). Then for the determinant

S(1,p):=deti 2 +j 2 p 1i,jp-1 2 ,

the number S(1,p)/a is an integral square, which confirms a conjecture posed by Cohen, Sun and Vsemirnov.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.205
Classification : 11C20, 11L10, 11R18

Wu, Hai-Liang 1

1 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, People’s Republic of China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2021__359_6_651_0,
     author = {Wu, Hai-Liang},
     title = {Determinants concerning {Legendre} symbols},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {651--655},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {6},
     year = {2021},
     doi = {10.5802/crmath.205},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.205/}
}
TY  - JOUR
AU  - Wu, Hai-Liang
TI  - Determinants concerning Legendre symbols
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 651
EP  - 655
VL  - 359
IS  - 6
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.205/
DO  - 10.5802/crmath.205
LA  - en
ID  - CRMATH_2021__359_6_651_0
ER  - 
%0 Journal Article
%A Wu, Hai-Liang
%T Determinants concerning Legendre symbols
%J Comptes Rendus. Mathématique
%D 2021
%P 651-655
%V 359
%N 6
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.205/
%R 10.5802/crmath.205
%G en
%F CRMATH_2021__359_6_651_0
Wu, Hai-Liang. Determinants concerning Legendre symbols. Comptes Rendus. Mathématique, Tome 359 (2021) no. 6, pp. 651-655. doi : 10.5802/crmath.205. http://geodesic.mathdoc.fr/articles/10.5802/crmath.205/

[1] Berndt, Bruce C.; Evans, Ronald J.; Williams, Kenneth S. Gauss and Jacobi Sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, 1998 | Zbl

[2] Carlitz, Leonard Some cyclotomic matrices, Acta Arith., Volume 5 (1959), pp. 293-308 | Zbl | MR | DOI

[3] Chapman, Robin Determinants of Legendre symbol matrices, Acta Arith., Volume 115 (2004) no. 3, pp. 231-244 | Zbl | MR | DOI

[4] Chapman, Robin My evil determinant problem (2012) (preprint, available at http://empslocal.ex.ac.uk/people/staff/rjchapma/etc/evildet.pdf)

[5] Hou, Xiang-dong Permutation polynomials over finite fields – a survey of recent advances, Finite Fields Appl., Volume 32 (2015), pp. 82-119 | Zbl | MR

[6] Ireland, Kenneth; Rosen, Michael A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, 84, Springer, 1990 | MR | Zbl

[7] Krattenthaler, Christian Advanced determinant calculus, Sémin. Lothar. Comb. (1999), B42q, 67 pages | Zbl | MR

[8] Krattenthaler, Christian Advanced determinant calculus: a complement, Linear Algebra Appl., Volume 411 (2005), pp. 68-166 | Zbl | MR | DOI

[9] Sun, Zhi-Wei On some determinants with Legendre symbol entries, Finite Fields Appl., Volume 56 (2019), pp. 285-307 | Zbl | MR

[10] Sun, Zhi-Wei Quadratic residues and related permutations and identities, Finite Fields Appl., Volume 59 (2019), pp. 246-283 | Zbl | MR

[11] Vsemirnov, Maxim On the evaluation of R. Chapman’s “evil determinant”, Linear Algebra Appl., Volume 436 (2012) no. 11, pp. 4101-4106 | MR | DOI | Zbl

[12] Vsemirnov, Maxim On R. Chapman’s “evil determinant”: case p1(mod4), Acta Arith., Volume 159 (2013) no. 4, pp. 331-344 | Zbl | MR | DOI

Cité par Sources :