Voir la notice de l'article provenant de la source Numdam
We prove quantifier elimination for the theory of quasi-real closed fields with a compatible valuation. This unifies the same known results for algebraically closed valued fields and real closed valued fields.
Nous prouvons l’élimination des quantificateurs pour la théorie des corps quasi-réels clos munis d’une valuation compatible. Cela reprend et unifie les mêmes résultats connus pour les corps algébriquement clos et les corps réels clos.
Matusinski, Mickaël 1 ; Müller, Simon 2
@article{CRMATH_2021__359_3_291_0, author = {Matusinski, Micka\"el and M\"uller, Simon}, title = {Quantifier elimination for quasi-real closed fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {291--295}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {3}, year = {2021}, doi = {10.5802/crmath.169}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.169/} }
TY - JOUR AU - Matusinski, Mickaël AU - Müller, Simon TI - Quantifier elimination for quasi-real closed fields JO - Comptes Rendus. Mathématique PY - 2021 SP - 291 EP - 295 VL - 359 IS - 3 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.169/ DO - 10.5802/crmath.169 LA - en ID - CRMATH_2021__359_3_291_0 ER -
%0 Journal Article %A Matusinski, Mickaël %A Müller, Simon %T Quantifier elimination for quasi-real closed fields %J Comptes Rendus. Mathématique %D 2021 %P 291-295 %V 359 %N 3 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.169/ %R 10.5802/crmath.169 %G en %F CRMATH_2021__359_3_291_0
Matusinski, Mickaël; Müller, Simon. Quantifier elimination for quasi-real closed fields. Comptes Rendus. Mathématique, Tome 359 (2021) no. 3, pp. 291-295. doi : 10.5802/crmath.169. http://geodesic.mathdoc.fr/articles/10.5802/crmath.169/
[1] Algebraische Konstruktion reeller Körper, Abh. Math. Semin. Univ. Hamb., Volume 5 (1927) no. 1, pp. 85-99 | Zbl | DOI
[2] Über nicht-archimedisch geordnete Körper. (Beiträge zur Algebra 5.)., Volume 8, 1927, pp. 3-13 | Zbl
[3] Real closed rings II, Ann. Pure Appl. Logic, Volume 25 (1983) no. 3, pp. 213-231 | MR | Zbl | DOI
[4] Mathematical logic and model theory. A brief introduction, Universitext, Springer, 2011, x+193 pages | Zbl
[5] Valuations, orderings, and Milnor -theory, Mathematical Surveys and Monographs, 124, American Mathematical Society, 2006, xiv+288 pages | MR | Zbl | DOI
[6] Valued fields, Springer Monographs in Mathematics, Springer, 2005, x+205 pages | Zbl
[7] Quasi-ordered fields, J. Pure Appl. Algebra, Volume 45 (1987) no. 3, pp. 207-210 | Zbl | MR | DOI
[8] Allgemeine Bewertungstheorie, J. Reine Angew. Math., Volume 167 (1932), pp. 160-196 | Zbl | MR | DOI
[9] The Valuation Difference Rank of a Quasi-Ordered Difference Field, Groups, Modules, and Model Theory – Surveys and Recent Developments : In Memory of Rüdiger Göbel (Droste, Manfred; Fuchs, László; Goldsmith, Brendan; Strüngmann, Lutz, eds.), Springer, 2017, pp. 399-414 | Zbl | DOI
[10] Compatibility of Quasi-Orderings and Valuations: A Baer–Krull Theorem for Quasi-Ordered Rings, Order, Volume 36 (2019) no. 2, pp. 249-269 | Zbl | MR | DOI
[11] Complete theories, Studies in Logic and the Foundations of Mathematics, North-Holland, 1956 | Zbl
[12] Improving the fundamental theorem of algebra, Math. Intell., Volume 29 (2007) no. 4, pp. 9-14 | MR | Zbl | DOI
[13] Commutative algebra. Vol. II, Graduate Texts in Mathematics, 29, Springer, 1975, x+414 pages (Reprint of the 1960 edition) | MR
Cité par Sources :