Voir la notice de l'article provenant de la source Numdam
By studying the variable denominators introduced by X. Zhou–L. Zhu, we generalize the results of D. Popovici for the extension theorem for jets. As a direct corollary, we also give a generalization of T. Ohsawa–K. Takegoshi’s extension theorem to a jet version.
Rao, Sheng 1, 2 ; Zhang, Runze 3
@article{CRMATH_2021__359_2_181_0, author = {Rao, Sheng and Zhang, Runze}, title = {$L^2$ extension theorem for jets with variable denominators}, journal = {Comptes Rendus. Math\'ematique}, pages = {181--193}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {2}, year = {2021}, doi = {10.5802/crmath.167}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.167/} }
TY - JOUR AU - Rao, Sheng AU - Zhang, Runze TI - $L^2$ extension theorem for jets with variable denominators JO - Comptes Rendus. Mathématique PY - 2021 SP - 181 EP - 193 VL - 359 IS - 2 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.167/ DO - 10.5802/crmath.167 LA - en ID - CRMATH_2021__359_2_181_0 ER -
%0 Journal Article %A Rao, Sheng %A Zhang, Runze %T $L^2$ extension theorem for jets with variable denominators %J Comptes Rendus. Mathématique %D 2021 %P 181-193 %V 359 %N 2 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.167/ %R 10.5802/crmath.167 %G en %F CRMATH_2021__359_2_181_0
Rao, Sheng; Zhang, Runze. $L^2$ extension theorem for jets with variable denominators. Comptes Rendus. Mathématique, Tome 359 (2021) no. 2, pp. 181-193. doi : 10.5802/crmath.167. http://geodesic.mathdoc.fr/articles/10.5802/crmath.167/
[1] A proof of the Ohsawa–Takegoshi theorem with sharp estimates, J. Math. Soc. Japan, Volume 68 (2016) no. 4, pp. 1461-1472 | Zbl | MR | DOI
[2] Suita conjecture and the Ohsawa–Takegoshi extension theorem, Invent. Math., Volume 193 (2013) no. 1, pp. 149-158 | MR | DOI | Zbl
[3] extension of -closed forms on weakly pseudoconvex Kähler manifolds (2020) (https://arxiv.org/abs/2009.14101)
[4] Estimations pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au dessus d’une variété kählérienne complète, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982), pp. 457-511 | Zbl | mathdoc-id | DOI
[5] On the Ohsawa–Takegoshi–Manivel extension theorem, Complex analysis and geometry (Paris, 1997) (Progress in Mathematics), Volume 188, Birkhäuser, 2000, pp. 47-82 | Zbl | MR | DOI
[6] Extension of holomorphic functions defined on non reduced analytic subvarieties, The legacy of Bernhard Riemann after one hundred and fifty years. Vol. I (Advanced Lectures in Mathematics (ALM)), Volume 35, International Press, 2016, pp. 191-222 | Zbl | MR
[7] A solution of an extension problem with an optimal estimate and applications, Ann. Math., Volume 181 (2015) no. 3, pp. 1139-1208 | MR | DOI | Zbl
[8] On the Ohsawa–Takegoshi extension theorem and the twisted Bochner–Kodaira identity, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 13-14, pp. 797-800 | Zbl | MR | DOI
[9] The optimal jet extension of Ohsawa–Takegoshi type, Nagoya Math. J., Volume 239 (2020), pp. 153-172 | Zbl | MR | DOI
[10] Un théorème de prolongement de sections holomorphes d’un fibré hermitien, Math. Z., Volume 212 (1993) no. 1, pp. 107-122 | Zbl | DOI
[11] Analytic inversion of adjunction: extension theorems with gain, Ann. Inst. Fourier, Volume 57 (2007) no. 3, pp. 703-718 | Zbl | mathdoc-id | MR | DOI
[12] Extension of jets with estimates, and an application (2017) (https://arxiv.org/abs/1707.04483)
[13] On the extension of holomorphic functions, Math. Z., Volume 195 (1987) no. 2, pp. 197-204 | Zbl | DOI
[14] extension for jets of holomorphic sections of a hermitian line bundle, Nagoya Math. J., Volume 180 (2005), pp. 1-34 | Zbl | MR | DOI
[15] An optimal extension theorem on weakly pseudoconvex Kähler manifolds, J. Differ. Geom., Volume 110 (2018) no. 1, pp. 135-186 | DOI
[16] Siu’s lemma, optimal extension and applications to twisted pluricanonical sheaves, Math. Ann., Volume 377 (2020) no. 1-2, pp. 675-722 | Zbl | MR | DOI
[17] On the Ohsawa–Takegoshi extension theorem and the Bochner–Kodaira identity with non-smooth twist factor, J. Math. Pures Appl., Volume 97 (2012) no. 6, pp. 579-601 | Zbl | MR
Cité par Sources :