Équations aux dérivées partielles
Meromorphic solutions of generalized inviscid Burgers’ equations and related PDES
Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1169-1178.

Voir la notice de l'article provenant de la source Numdam

The purposes of this paper are twofold. The first one is to describe entire solutions of certain type of PDEs in n with the modified KdV-Burgers equation and modified Zakharov-Kuznetsov equation as the prototypes. The second one is to characterize entire and meromorphic solutions of generalized inviscid Burgers’ equations in 2 .

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.136
Classification : 35F20, 32A15, 32A22

Lü, Feng 1

1 College of Science, China University of Petroleum, Qingdao Shandong, 266580, P.R. China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_11-12_1169_0,
     author = {L\"u, Feng},
     title = {Meromorphic solutions of generalized inviscid {Burgers{\textquoteright}} equations and related {PDES}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1169--1178},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.136},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.136/}
}
TY  - JOUR
AU  - Lü, Feng
TI  - Meromorphic solutions of generalized inviscid Burgers’ equations and related PDES
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1169
EP  - 1178
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.136/
DO  - 10.5802/crmath.136
LA  - en
ID  - CRMATH_2020__358_11-12_1169_0
ER  - 
%0 Journal Article
%A Lü, Feng
%T Meromorphic solutions of generalized inviscid Burgers’ equations and related PDES
%J Comptes Rendus. Mathématique
%D 2020
%P 1169-1178
%V 358
%N 11-12
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.136/
%R 10.5802/crmath.136
%G en
%F CRMATH_2020__358_11-12_1169_0
Lü, Feng. Meromorphic solutions of generalized inviscid Burgers’ equations and related PDES. Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1169-1178. doi : 10.5802/crmath.136. http://geodesic.mathdoc.fr/articles/10.5802/crmath.136/

[1] Chang, Der-Chen; Li, Bao Qin; Yang, Chung-Chun On composition of meromorphic functions in several complex variables, Forum Math., Volume 7 (1995), pp. 77-94 | MR | Zbl

[2] Dovbush, Peter V. Normal functions of many complex variables, Mosc. Univ. Math. Bull., Volume 36 (1981) no. 1, pp. 44-48 | Zbl

[3] Dovbush, Peter V. Zalcman’s lemma in n , Complex Var. Theory Appl., Volume 65 (2020) no. 5, pp. 796-800 | MR | DOI | Zbl

[4] Fay, R. D. Plane sound waves of finite amplitude, J. Acoust. Soc. Am., Volume 3 (1931), pp. 222-241 | DOI | Zbl

[5] Hassan, M. M. M. New exact solutions of two nonlinear physical models, Commun. Theor. Phys., Volume 53 (2010) no. 4, pp. 596-604 | MR | DOI | Zbl

[6] Hayman, Walter Kurt Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, 1964 | Zbl

[7] Hu, Pei-Chu; Li, Bao Qin On meromorphic solutions of linear partial differential equations of second order, J. Math Anal Appl., Volume 393 (2012) no. 1, pp. 200-211 | MR | Zbl

[8] Hu, Pei-Chu; Yang, Chung-Chun Malmquist type theorem and factorization of meromorphic solutions of partial differential equations, Complex Var. Theory Appl., Volume 27 (1995) no. 3, pp. 269-285 | MR | Zbl

[9] Hu, Pei-Chu; Yang, Chung-Chun Unicity of Meromorphic Mappings, Advances in Complex Analysis and its Applications, 1, Kluwer Academic Publishers, 2003 | MR | Zbl

[10] Hu, Pei-Chu; Yang, Chung-Chun Global solutions of homogeneous linear partial differential equations of the second order, Mich. Math. J., Volume 58 (2009) no. 3, pp. 807-831 | MR | Zbl

[11] Hu, Pei-Chu; Yang, Chung-Chun The Tumura–Clunie theorem in several complex variables, Bull. Aust. Math. Soc., Volume 90 (2014) no. 3, pp. 444-456 | MR | Zbl

[12] Hu, Pei-Chu; Yang, Chung-Chun On complex solutions of certain partial differential equations, Complex Var. Elliptic Equ., Volume 62 (2017) no. 10, pp. 1492-1505 | MR | Zbl

[13] Kujala, Robert O. Functions of finite λ-type in several complex variables, Trans. Am. Math. Soc., Volume 161 (1971), pp. 327-358 | MR | Zbl

[14] Li, Bao Qin On reduction of functional-differential equations, Complex Var. Theory Appl., Volume 31 (1996) no. 4, pp. 311-324 | MR | Zbl

[15] Li, Bao Qin Entire solutions of certain partial differential equations and factorization of partial derivatives, Trans. Am. Math. Soc., Volume 357 (2005) no. 8, pp. 3169-3177 | MR | Zbl

[16] Li, Bao Qin entire solutions of u z 1 m +u z 2 n =e g , Nagoya Math. J., Volume 178 (2005), pp. 151-162 | Zbl

[17] Li, Bao Qin On meromorphic solutions of f 2 +g 2 =1, Math. Z., Volume 258 (2008) no. 4, pp. 763-771 | Zbl

[18] Liao, Liangwen; Su, Weiyi; Yang, Chung-Chun A Malmquist–Yosida type of theorem for the second-order algebraic differential equations, J. Differ. Equ., Volume 187 (2003) no. 1, pp. 63-71 | MR | DOI | Zbl

[19] Lü, Feng; Xu, Junfeng; Chen, Ang Entire functions sharing polynomials with their first derivatives, Arch. Math., Volume 92 (2009) no. 6, pp. 593-601 | MR | Zbl

[20] Rodin, Ervin Y. A Riccati solution for Burgers’ equation, Q. Appl. Math., Volume 27 (1970), pp. 541-545 | MR | DOI | Zbl

[21] Saleeby, Elias George Meromorphic solutions of generalized inviscid Burgers’ equations and a family of quadratic PDEs, J. Math. Anal. Appl., Volume 425 (2015) no. 1, pp. 508-519 | MR | DOI | Zbl

[22] Stoll, Wilhelm Introduction to Value Distribution Theory of Meromorphic Maps, Lecture Notes in Mathematics, 950, Springer, 1982 | MR | Zbl

[23] Timoney, Richard M. Bloch functions in several complex variables I, Bull London Math Soc., Volume 12 (1980) no. 4, pp. 241-267 | MR | DOI | Zbl

[24] Varoglu, EROL; Finn, W. D. Liam Space-time finite elements incorporating characteristics for the Burgers’ equation, Int. J. Numer. Meth. Engng., Volume 16 (1980) no. Special Issue, p. 1716-184 | MR | Zbl

[25] Vitter, Al The lemma of the logarithmic derivative in seveal complex variables, Duke Math. J., Volume 44 (1977) no. 1, pp. 89-104 | MR | DOI | Zbl

[26] Yuan, Wenjun; Huang, Yong; Shang, Yadong All traveling wave exact solutions of two nonlinear physical models, Appl. Math. Comput., Volume 219 (2013) no. 11, pp. 6212-6223 | MR | Zbl

[27] Zalcman, Lawrence Normal families: new perspectives, Bull. Am. Math. Soc., Volume 35 (1998) no. 3, pp. 215-230 | MR | DOI | Zbl

Cité par Sources :