Voir la notice de l'article provenant de la source Numdam
The purposes of this paper are twofold. The first one is to describe entire solutions of certain type of PDEs in with the modified KdV-Burgers equation and modified Zakharov-Kuznetsov equation as the prototypes. The second one is to characterize entire and meromorphic solutions of generalized inviscid Burgers’ equations in .
Lü, Feng 1
@article{CRMATH_2020__358_11-12_1169_0, author = {L\"u, Feng}, title = {Meromorphic solutions of generalized inviscid {Burgers{\textquoteright}} equations and related {PDES}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1169--1178}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {11-12}, year = {2020}, doi = {10.5802/crmath.136}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.136/} }
TY - JOUR AU - Lü, Feng TI - Meromorphic solutions of generalized inviscid Burgers’ equations and related PDES JO - Comptes Rendus. Mathématique PY - 2020 SP - 1169 EP - 1178 VL - 358 IS - 11-12 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.136/ DO - 10.5802/crmath.136 LA - en ID - CRMATH_2020__358_11-12_1169_0 ER -
%0 Journal Article %A Lü, Feng %T Meromorphic solutions of generalized inviscid Burgers’ equations and related PDES %J Comptes Rendus. Mathématique %D 2020 %P 1169-1178 %V 358 %N 11-12 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.136/ %R 10.5802/crmath.136 %G en %F CRMATH_2020__358_11-12_1169_0
Lü, Feng. Meromorphic solutions of generalized inviscid Burgers’ equations and related PDES. Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1169-1178. doi : 10.5802/crmath.136. http://geodesic.mathdoc.fr/articles/10.5802/crmath.136/
[1] On composition of meromorphic functions in several complex variables, Forum Math., Volume 7 (1995), pp. 77-94 | MR | Zbl
[2] Normal functions of many complex variables, Mosc. Univ. Math. Bull., Volume 36 (1981) no. 1, pp. 44-48 | Zbl
[3] Zalcman’s lemma in , Complex Var. Theory Appl., Volume 65 (2020) no. 5, pp. 796-800 | MR | DOI | Zbl
[4] Plane sound waves of finite amplitude, J. Acoust. Soc. Am., Volume 3 (1931), pp. 222-241 | DOI | Zbl
[5] New exact solutions of two nonlinear physical models, Commun. Theor. Phys., Volume 53 (2010) no. 4, pp. 596-604 | MR | DOI | Zbl
[6] Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, 1964 | Zbl
[7] On meromorphic solutions of linear partial differential equations of second order, J. Math Anal Appl., Volume 393 (2012) no. 1, pp. 200-211 | MR | Zbl
[8] Malmquist type theorem and factorization of meromorphic solutions of partial differential equations, Complex Var. Theory Appl., Volume 27 (1995) no. 3, pp. 269-285 | MR | Zbl
[9] Unicity of Meromorphic Mappings, Advances in Complex Analysis and its Applications, 1, Kluwer Academic Publishers, 2003 | MR | Zbl
[10] Global solutions of homogeneous linear partial differential equations of the second order, Mich. Math. J., Volume 58 (2009) no. 3, pp. 807-831 | MR | Zbl
[11] The Tumura–Clunie theorem in several complex variables, Bull. Aust. Math. Soc., Volume 90 (2014) no. 3, pp. 444-456 | MR | Zbl
[12] On complex solutions of certain partial differential equations, Complex Var. Elliptic Equ., Volume 62 (2017) no. 10, pp. 1492-1505 | MR | Zbl
[13] Functions of finite -type in several complex variables, Trans. Am. Math. Soc., Volume 161 (1971), pp. 327-358 | MR | Zbl
[14] On reduction of functional-differential equations, Complex Var. Theory Appl., Volume 31 (1996) no. 4, pp. 311-324 | MR | Zbl
[15] Entire solutions of certain partial differential equations and factorization of partial derivatives, Trans. Am. Math. Soc., Volume 357 (2005) no. 8, pp. 3169-3177 | MR | Zbl
[16] entire solutions of , Nagoya Math. J., Volume 178 (2005), pp. 151-162 | Zbl
[17] On meromorphic solutions of , Math. Z., Volume 258 (2008) no. 4, pp. 763-771 | Zbl
[18] A Malmquist–Yosida type of theorem for the second-order algebraic differential equations, J. Differ. Equ., Volume 187 (2003) no. 1, pp. 63-71 | MR | DOI | Zbl
[19] Entire functions sharing polynomials with their first derivatives, Arch. Math., Volume 92 (2009) no. 6, pp. 593-601 | MR | Zbl
[20] A Riccati solution for Burgers’ equation, Q. Appl. Math., Volume 27 (1970), pp. 541-545 | MR | DOI | Zbl
[21] Meromorphic solutions of generalized inviscid Burgers’ equations and a family of quadratic PDEs, J. Math. Anal. Appl., Volume 425 (2015) no. 1, pp. 508-519 | MR | DOI | Zbl
[22] Introduction to Value Distribution Theory of Meromorphic Maps, Lecture Notes in Mathematics, 950, Springer, 1982 | MR | Zbl
[23] Bloch functions in several complex variables I, Bull London Math Soc., Volume 12 (1980) no. 4, pp. 241-267 | MR | DOI | Zbl
[24] Space-time finite elements incorporating characteristics for the Burgers’ equation, Int. J. Numer. Meth. Engng., Volume 16 (1980) no. Special Issue, p. 1716-184 | MR | Zbl
[25] The lemma of the logarithmic derivative in seveal complex variables, Duke Math. J., Volume 44 (1977) no. 1, pp. 89-104 | MR | DOI | Zbl
[26] All traveling wave exact solutions of two nonlinear physical models, Appl. Math. Comput., Volume 219 (2013) no. 11, pp. 6212-6223 | MR | Zbl
[27] Normal families: new perspectives, Bull. Am. Math. Soc., Volume 35 (1998) no. 3, pp. 215-230 | MR | DOI | Zbl
Cité par Sources :