Abstract Excision and 1 -Homology
Confluentes Mathematici, Tome 15 (2023), pp. 107-136

Voir la notice de l'article provenant de la source Numdam

We use the abstract setting of excisive functors in the language of -categories to show that the best approximation to the 1 -homology functor by an excisive functor is trivial.

Then we make an effort to explain the used language on a conceptual level for those who do not feel at home with -categories, prove that the singular chain complex functor is indeed excisive in the abstract sense, and show how the latter leads to classical excision statements in the form of Mayer–Vietoris sequences.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/cml.95
Classification : 55N35, 55U35, 18F50, 18N60
Keywords: $\ell ^1$-homology, excision, excisive approximation, $\infty $-categories

Witzig, Johannes 1

1 Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
Licence : CC-BY-NC-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CML_2023__15__107_0,
     author = {Witzig, Johannes},
     title = {Abstract {Excision} and $\ell ^1${-Homology}},
     journal = {Confluentes Mathematici},
     pages = {107--136},
     publisher = {Institut Camille Jordan},
     volume = {15},
     year = {2023},
     doi = {10.5802/cml.95},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/cml.95/}
}
TY  - JOUR
AU  - Witzig, Johannes
TI  - Abstract Excision and $\ell ^1$-Homology
JO  - Confluentes Mathematici
PY  - 2023
SP  - 107
EP  - 136
VL  - 15
PB  - Institut Camille Jordan
UR  - http://geodesic.mathdoc.fr/articles/10.5802/cml.95/
DO  - 10.5802/cml.95
LA  - en
ID  - CML_2023__15__107_0
ER  - 
%0 Journal Article
%A Witzig, Johannes
%T Abstract Excision and $\ell ^1$-Homology
%J Confluentes Mathematici
%D 2023
%P 107-136
%V 15
%I Institut Camille Jordan
%U http://geodesic.mathdoc.fr/articles/10.5802/cml.95/
%R 10.5802/cml.95
%G en
%F CML_2023__15__107_0
Witzig, Johannes. Abstract Excision and $\ell ^1$-Homology. Confluentes Mathematici, Tome 15 (2023), pp. 107-136. doi: 10.5802/cml.95

Cité par Sources :