Non-local approximations of the gradient
Confluentes Mathematici, Tome 15 (2023), pp. 27-44

Voir la notice de l'article provenant de la source Numdam

We revisit the proofs of a few basic results concerning non-local approximations of the gradient. A typical such result asserts that, if (ρ ε ) is a radial approximation to the identity in N and u belongs to a homogeneous Sobolev space W ˙ 1,p , then

V ε (x):=N N u(x+h)-u(x) |h|h |h|ρ ε (h)dh,x N ,

converges in L p to the distributional gradient u as ε0.

We highlight the crucial role played by the representation formula V ε =(u)*F ε , where F ε is an approximation to the identity defined via ρ ε . This formula allows to unify the proofs of a significant number of results in the literature, by reducing them to standard properties of the approximations to the identity.

We also highlight the effectiveness of a symmetric non-local integration by parts formula.

Relaxations of the assumptions on u and ρ ε , allowing, e.g., heavy tails kernels or a distributional definition of V ε , are also discussed. In particular, we show that heavy tails kernels may be treated as perturbations of approximations to the identity.

Reçu le :
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/cml.91
Classification : 46E35, 26A45
Keywords: Distributional gradient, Non-local approximation, Sobolev spaces, Functions of bounded variation

Brezis, Haim 1 ; Mironescu, Petru 2

1 Rutgers University, Department of Mathematics, Hill Center, Busch Campus, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA
2 Universite Claude Bernard Lyon 1, ICJ UMR5208, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, 69622 Villeurbanne, France
Licence : CC-BY-NC-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CML_2023__15__27_0,
     author = {Brezis, Haim and Mironescu, Petru},
     title = {Non-local approximations of the gradient},
     journal = {Confluentes Mathematici},
     pages = {27--44},
     publisher = {Institut Camille Jordan},
     volume = {15},
     year = {2023},
     doi = {10.5802/cml.91},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/cml.91/}
}
TY  - JOUR
AU  - Brezis, Haim
AU  - Mironescu, Petru
TI  - Non-local approximations of the gradient
JO  - Confluentes Mathematici
PY  - 2023
SP  - 27
EP  - 44
VL  - 15
PB  - Institut Camille Jordan
UR  - http://geodesic.mathdoc.fr/articles/10.5802/cml.91/
DO  - 10.5802/cml.91
LA  - en
ID  - CML_2023__15__27_0
ER  - 
%0 Journal Article
%A Brezis, Haim
%A Mironescu, Petru
%T Non-local approximations of the gradient
%J Confluentes Mathematici
%D 2023
%P 27-44
%V 15
%I Institut Camille Jordan
%U http://geodesic.mathdoc.fr/articles/10.5802/cml.91/
%R 10.5802/cml.91
%G en
%F CML_2023__15__27_0
Brezis, Haim; Mironescu, Petru. Non-local approximations of the gradient. Confluentes Mathematici, Tome 15 (2023), pp. 27-44. doi: 10.5802/cml.91

Cité par Sources :