Voir la notice de l'article provenant de la source Numdam
We use the geometric concept of principal angles between subspaces to compute the noncommutative distribution of an expression involving two free projections. For example, this allows to simplify a formula by Fevrier–Mastnak–Nica–Szpojankowski about the free Bernoulli anticommutator. As a byproduct, we observe the remarkable fact that the principal angles between random half-dimensional subspaces are asymptotically distributed according to the uniform measure on .
Aubrun, Guillaume 1
@article{CML_2021__13_2_3_0, author = {Aubrun, Guillaume}, title = {Principal angles between random subspaces and polynomials in two free projections}, journal = {Confluentes Mathematici}, pages = {3--10}, publisher = {Institut Camille Jordan}, volume = {13}, number = {2}, year = {2021}, doi = {10.5802/cml.74}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/cml.74/} }
TY - JOUR AU - Aubrun, Guillaume TI - Principal angles between random subspaces and polynomials in two free projections JO - Confluentes Mathematici PY - 2021 SP - 3 EP - 10 VL - 13 IS - 2 PB - Institut Camille Jordan UR - http://geodesic.mathdoc.fr/articles/10.5802/cml.74/ DO - 10.5802/cml.74 LA - en ID - CML_2021__13_2_3_0 ER -
%0 Journal Article %A Aubrun, Guillaume %T Principal angles between random subspaces and polynomials in two free projections %J Confluentes Mathematici %D 2021 %P 3-10 %V 13 %N 2 %I Institut Camille Jordan %U http://geodesic.mathdoc.fr/articles/10.5802/cml.74/ %R 10.5802/cml.74 %G en %F CML_2021__13_2_3_0
Aubrun, Guillaume. Principal angles between random subspaces and polynomials in two free projections. Confluentes Mathematici, Tome 13 (2021) no. 2, pp. 3-10. doi : 10.5802/cml.74. http://geodesic.mathdoc.fr/articles/10.5802/cml.74/
[1] On the largest principal angle between random subspaces, Linear Algebra Appl., Volume 414 (2006) no. 1, pp. 288-294 | DOI | MR
[2] A gentle guide to the basics of two projections theory, Linear Algebra Appl., Volume 432 (2010) no. 6, pp. 1412-1459 | DOI | MR
[3] Using Boolean cumulants to study multiplication and anti-commutators of free random variables, Trans. Amer. Math. Soc., Volume 373 (2020) no. 10, pp. 7167-7205 | DOI | MR
[4] Matrix computations, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013, xiv+756 pages | MR
[5] On eigenvalues of the sum of two random projections, Journal of Statistical Physics, Volume 149 (2012) no. 2, pp. 246-258
[6] Free probability and random matrices, Fields Institute Monographs, 35, Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, ON, 2017, xiv+336 pages | DOI | MR
[7] Commutators of free random variables, Duke Math. J., Volume 92 (1998) no. 3, pp. 553-592 | DOI | MR
[8] Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, 335, Cambridge University Press, Cambridge, 2006, xvi+417 pages | DOI | MR
[9] Free random variables, CRM Monograph Series, 1, American Mathematical Society, Providence, RI, 1992, vi+70 pages (A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups) | DOI | MR
Cité par Sources :