Principal angles between random subspaces and polynomials in two free projections
Confluentes Mathematici, Tome 13 (2021) no. 2, pp. 3-10.

Voir la notice de l'article provenant de la source Numdam

We use the geometric concept of principal angles between subspaces to compute the noncommutative distribution of an expression involving two free projections. For example, this allows to simplify a formula by Fevrier–Mastnak–Nica–Szpojankowski about the free Bernoulli anticommutator. As a byproduct, we observe the remarkable fact that the principal angles between random half-dimensional subspaces are asymptotically distributed according to the uniform measure on [0,π/2].

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/cml.74
Classification : 46L54
Keywords: free probability, principal angles, random subspace

Aubrun, Guillaume 1

1 Université de Lyon; CNRS; Université Lyon 1; Institut Camille Jordan UMR5208, 69622 Villeurbanne Cedex, France
Licence : CC-BY-NC-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CML_2021__13_2_3_0,
     author = {Aubrun, Guillaume},
     title = {Principal angles between random subspaces and polynomials in two free projections},
     journal = {Confluentes Mathematici},
     pages = {3--10},
     publisher = {Institut Camille Jordan},
     volume = {13},
     number = {2},
     year = {2021},
     doi = {10.5802/cml.74},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/cml.74/}
}
TY  - JOUR
AU  - Aubrun, Guillaume
TI  - Principal angles between random subspaces and polynomials in two free projections
JO  - Confluentes Mathematici
PY  - 2021
SP  - 3
EP  - 10
VL  - 13
IS  - 2
PB  - Institut Camille Jordan
UR  - http://geodesic.mathdoc.fr/articles/10.5802/cml.74/
DO  - 10.5802/cml.74
LA  - en
ID  - CML_2021__13_2_3_0
ER  - 
%0 Journal Article
%A Aubrun, Guillaume
%T Principal angles between random subspaces and polynomials in two free projections
%J Confluentes Mathematici
%D 2021
%P 3-10
%V 13
%N 2
%I Institut Camille Jordan
%U http://geodesic.mathdoc.fr/articles/10.5802/cml.74/
%R 10.5802/cml.74
%G en
%F CML_2021__13_2_3_0
Aubrun, Guillaume. Principal angles between random subspaces and polynomials in two free projections. Confluentes Mathematici, Tome 13 (2021) no. 2, pp. 3-10. doi : 10.5802/cml.74. http://geodesic.mathdoc.fr/articles/10.5802/cml.74/

[1] Absil, P.-A.; Edelman, A.; Koev, P. On the largest principal angle between random subspaces, Linear Algebra Appl., Volume 414 (2006) no. 1, pp. 288-294 | DOI | MR

[2] Böttcher, A.; Spitkovsky, I. M. A gentle guide to the basics of two projections theory, Linear Algebra Appl., Volume 432 (2010) no. 6, pp. 1412-1459 | DOI | MR

[3] Fevrier, Maxime; Mastnak, Mitja; Nica, Alexandru; Szpojankowski, Kamil Using Boolean cumulants to study multiplication and anti-commutators of free random variables, Trans. Amer. Math. Soc., Volume 373 (2020) no. 10, pp. 7167-7205 | DOI | MR

[4] Golub, Gene H.; Van Loan, Charles F. Matrix computations, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013, xiv+756 pages | MR

[5] Kargin, Vladislav On eigenvalues of the sum of two random projections, Journal of Statistical Physics, Volume 149 (2012) no. 2, pp. 246-258

[6] Mingo, James A.; Speicher, Roland Free probability and random matrices, Fields Institute Monographs, 35, Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, ON, 2017, xiv+336 pages | DOI | MR

[7] Nica, Alexandru; Speicher, Roland Commutators of free random variables, Duke Math. J., Volume 92 (1998) no. 3, pp. 553-592 | DOI | MR

[8] Nica, Alexandru; Speicher, Roland Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, 335, Cambridge University Press, Cambridge, 2006, xvi+417 pages | DOI | MR

[9] Voiculescu, D. V.; Dykema, K. J.; Nica, A. Free random variables, CRM Monograph Series, 1, American Mathematical Society, Providence, RI, 1992, vi+70 pages (A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups) | DOI | MR

Cité par Sources :