Introduction to a small cancellation theorem
Confluentes Mathematici, Tome 13 (2021) no. 1, pp. 79-102.

Voir la notice de l'article provenant de la source Numdam

This note is intended as an introduction to two previous works respectively by Dahmani, Guirardel, Osin, and by Cantat, Lamy. We give two proofs of a Small Cancellation Theorem for groups acting on a simplicial tree. We discuss the application to the group of plane polynomial automorphisms over any ground field.

Reçu le :
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/cml.73
Classification : 20F06, 20E08, 14R10
Keywords: Small cancellation, group action on tree, polynomial automorphisms

Lamy, Stéphane 1 ; Lonjou, Anne 2

1 Institut de Mathématiques de Toulouse UMR 5219, Université de Toulouse, UPS F-31062 Toulouse Cedex 9, France
2 Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, 4051 Basel, Switzerland
Licence : CC-BY-NC-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CML_2021__13_1_79_0,
     author = {Lamy, St\'ephane and Lonjou, Anne},
     title = {Introduction to a small cancellation theorem},
     journal = {Confluentes Mathematici},
     pages = {79--102},
     publisher = {Institut Camille Jordan},
     volume = {13},
     number = {1},
     year = {2021},
     doi = {10.5802/cml.73},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/cml.73/}
}
TY  - JOUR
AU  - Lamy, Stéphane
AU  - Lonjou, Anne
TI  - Introduction to a small cancellation theorem
JO  - Confluentes Mathematici
PY  - 2021
SP  - 79
EP  - 102
VL  - 13
IS  - 1
PB  - Institut Camille Jordan
UR  - http://geodesic.mathdoc.fr/articles/10.5802/cml.73/
DO  - 10.5802/cml.73
LA  - en
ID  - CML_2021__13_1_79_0
ER  - 
%0 Journal Article
%A Lamy, Stéphane
%A Lonjou, Anne
%T Introduction to a small cancellation theorem
%J Confluentes Mathematici
%D 2021
%P 79-102
%V 13
%N 1
%I Institut Camille Jordan
%U http://geodesic.mathdoc.fr/articles/10.5802/cml.73/
%R 10.5802/cml.73
%G en
%F CML_2021__13_1_79_0
Lamy, Stéphane; Lonjou, Anne. Introduction to a small cancellation theorem. Confluentes Mathematici, Tome 13 (2021) no. 1, pp. 79-102. doi : 10.5802/cml.73. http://geodesic.mathdoc.fr/articles/10.5802/cml.73/

[1] M. Bestvina and K. Fujiwara. Bounded cohomology of subgroups of mapping class groups. Geometry and Topology, 6:69–89 (electronic), 2002. | DOI | MR | Zbl

[2] C. Champetier. Petite simplification dans les groupes hyperboliques. Ann. Fac. Sci. Toulouse Math. (6), 3(2):161–221, 1994. | DOI | MR | Zbl

[3] S. Cantat and S. Lamy. Normal subgroups in the Cremona group. Acta Math., 210(1):31–94, 2013. With an appendix by Yves de Cornulier. | DOI | MR | Zbl

[4] V. I. Danilov. Non-simplicity of the group of unimodular automorphisms of an affine plane. Mat. Zametki, 15:289–293, 1974. | DOI

[5] T. Delzant. Sous-groupes distingués et quotients des groupes hyperboliques. Duke Math. J., 83(3):661–682, 1996. | DOI | Zbl

[6] F. Dahmani, V. Guirardel and D. Osin. Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. Mem. Amer. Math. Soc., 245(1156), 2017. | DOI | MR | Zbl

[7] P. de la Harpe. Topics in geometric group theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. | Zbl

[8] J.-P. Furter and S. Lamy. Normal subgroup generated by a plane polynomial automorphism. Transform. Groups, 15(3):577–610, 2010. | DOI | MR | Zbl

[9] M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of Math. Sci. Res. Inst. Publ., pages 75–263. Springer, New York, 1987. | DOI | Zbl

[10] S. Lamy. L’alternative de Tits pour Aut [ 2 ]. J. Algebra, 239(2):413–437, 2001. | DOI | Zbl

[11] S. Lamy. Une preuve géométrique du théorème de Jung. Enseign. Math. (2), 48(3-4):291–315, 2002. | Zbl

[12] A. Lonjou. Non simplicité du groupe de Cremona sur tout corps. Ann. Inst. Fourier (Grenoble), 66(5):2021–2046, 2016. | DOI | Zbl

[13] R. C. Lyndon and P. E. Schupp. Combinatorial group theory. Springer-Verlag, Berlin-New York, 1977. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89.

[14] A. Minasyan and D. Osin. Acylindrical hyperbolicity of groups acting on trees. Math. Ann., 362(3–4):1055–1105, 2015. | DOI | MR | Zbl

[15] A. Y. Ol’shanskiĭ. SQ -universality of hyperbolic groups. Mat. Sb., 186(8):119–132, 1995. | MR

[16] J.-P. Serre. Trees. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation.

Cité par Sources :