Characteristic functions on the boundary of a planar domain need not be traces of least gradient functions
Confluentes Mathematici, Tome 9 (2017) no. 1, pp. 65-93
Cet article a éte moissonné depuis la source Numdam
Given a smooth bounded planar domain , we construct a compact set on the boundary such that its characteristic function is not the trace of a least gradient function. This generalizes the construction of Spradlin and Tamasan [3] when is a disc.
Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI :
10.5802/cml.36
Révisé le :
Accepté le :
Publié le :
Classification :
26B30, 35J56
Keywords: traces of functions of bounded variation, least gradient problem
Keywords: traces of functions of bounded variation, least gradient problem
Affiliations des auteurs :
Dos Santos, Mickaël 1
Licence :
CC-BY-NC-ND 4.0
CC-BY-NC-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CML_2017__9_1_65_0,
author = {Dos Santos, Micka\"el},
title = {Characteristic functions on the boundary of a planar domain need not be traces of least gradient functions},
journal = {Confluentes Mathematici},
pages = {65--93},
year = {2017},
publisher = {Institut Camille Jordan},
volume = {9},
number = {1},
doi = {10.5802/cml.36},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/cml.36/}
}
TY - JOUR AU - Dos Santos, Mickaël TI - Characteristic functions on the boundary of a planar domain need not be traces of least gradient functions JO - Confluentes Mathematici PY - 2017 SP - 65 EP - 93 VL - 9 IS - 1 PB - Institut Camille Jordan UR - http://geodesic.mathdoc.fr/articles/10.5802/cml.36/ DO - 10.5802/cml.36 LA - en ID - CML_2017__9_1_65_0 ER -
%0 Journal Article %A Dos Santos, Mickaël %T Characteristic functions on the boundary of a planar domain need not be traces of least gradient functions %J Confluentes Mathematici %D 2017 %P 65-93 %V 9 %N 1 %I Institut Camille Jordan %U http://geodesic.mathdoc.fr/articles/10.5802/cml.36/ %R 10.5802/cml.36 %G en %F CML_2017__9_1_65_0
Dos Santos, Mickaël. Characteristic functions on the boundary of a planar domain need not be traces of least gradient functions. Confluentes Mathematici, Tome 9 (2017) no. 1, pp. 65-93. doi: 10.5802/cml.36
Cité par Sources :