Weyl formulae for the Robin Laplacian in the semiclassical limit
Confluentes Mathematici, Tome 8 (2016) no. 2, pp. 39-57.

Voir la notice de l'article provenant de la source Numdam

This paper is devoted to establish semiclassical Weyl formulae for the Robin Laplacian on smooth domains in any dimension. Theirs proofs are reminiscent of the Born-Oppenheimer method.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/cml.32
Classification : 35P15, 35P20
Keywords: Robin Laplacian, Born-Oppenheimer approximation, Weyl formulae

Kachmar, Ayman 1 ; Keraval, Pierig 2 ; Raymond, Nicolas 2

1 Lebanese University, Department of Mathematics, Hadath, Lebanon.
2 IRMAR, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes cedex, France
@article{CML_2016__8_2_39_0,
     author = {Kachmar, Ayman and Keraval, Pierig and Raymond, Nicolas},
     title = {Weyl formulae for the {Robin} {Laplacian}  in the semiclassical limit},
     journal = {Confluentes Mathematici},
     pages = {39--57},
     publisher = {Institut Camille Jordan},
     volume = {8},
     number = {2},
     year = {2016},
     doi = {10.5802/cml.32},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/cml.32/}
}
TY  - JOUR
AU  - Kachmar, Ayman
AU  - Keraval, Pierig
AU  - Raymond, Nicolas
TI  - Weyl formulae for the Robin Laplacian  in the semiclassical limit
JO  - Confluentes Mathematici
PY  - 2016
SP  - 39
EP  - 57
VL  - 8
IS  - 2
PB  - Institut Camille Jordan
UR  - http://geodesic.mathdoc.fr/articles/10.5802/cml.32/
DO  - 10.5802/cml.32
LA  - en
ID  - CML_2016__8_2_39_0
ER  - 
%0 Journal Article
%A Kachmar, Ayman
%A Keraval, Pierig
%A Raymond, Nicolas
%T Weyl formulae for the Robin Laplacian  in the semiclassical limit
%J Confluentes Mathematici
%D 2016
%P 39-57
%V 8
%N 2
%I Institut Camille Jordan
%U http://geodesic.mathdoc.fr/articles/10.5802/cml.32/
%R 10.5802/cml.32
%G en
%F CML_2016__8_2_39_0
Kachmar, Ayman; Keraval, Pierig; Raymond, Nicolas. Weyl formulae for the Robin Laplacian  in the semiclassical limit. Confluentes Mathematici, Tome 8 (2016) no. 2, pp. 39-57. doi : 10.5802/cml.32. http://geodesic.mathdoc.fr/articles/10.5802/cml.32/

[1] Balazard-Konlein, Anne Asymptotique semi-classique du spectre pour des opérateurs à symbole opératoriel, C. R. Acad. Sci. Paris Sér. I Math., Volume 301 (1985) no. 20, pp. 903-906

[2] Bonnaillie-Noël, V.; Hérau, F.; Raymond, N. Magnetic WKB Constructions, Arch. Ration. Mech. Anal., Volume 221 (2016) no. 2, pp. 817-891 | DOI

[3] Colin de Verdière, Yves L’asymptotique de Weyl pour les bouteilles magnétiques, Comm. Math. Phys., Volume 105 (1986) no. 2, pp. 327-335 http://projecteuclid.org/...

[4] Cycon, H. L.; Froese, R. G.; Kirsch, W.; Simon, B. Schrödinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987, x+319 pages

[5] Duchêne, V.; Raymond, N. Spectral asymptotics of a broken δ-interaction, J. Phys. A, Volume 47 (2014) no. 15, 155203, 19 pages | DOI

[6] Exner, Pavel; Minakov, Alexander; Parnovski, Leonid Asymptotic eigenvalue estimates for a Robin problem with a large parameter, Port. Math., Volume 71 (2014) no. 2, pp. 141-156 | DOI

[7] Helffer, B.; Kachmar, A. Eigenvalues for the Robin Laplacian in domains with variable curvature, Trans. Amer. Math. Soc., Volume 369 (2017) no. 5, pp. 3253-3287

[8] Helffer, B.; Kachmar, A.; Raymond, N. Tunneling for the Robin Laplacian in smooth planar domains, Contemp. Math., Volume 19 (2017) no. 1, 1650030 (38 pages) pages

[9] Helffer, Bernard Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, 1336, Springer-Verlag, Berlin, 1988, vi+107 pages

[10] Jecko, Thierry On the mathematical treatment of the Born-Oppenheimer approximation, J. Math. Phys., Volume 55 (2014) no. 5, 053504, 26 pages | DOI

[11] Klein, M.; Martinez, A.; Seiler, R.; Wang, X. P. On the Born-Oppenheimer expansion for polyatomic molecules, Comm. Math. Phys., Volume 143 (1992) no. 3, pp. 607-639 http://projecteuclid.org/euclid.cmp/1104249085

[12] Krejčiřík, David; Raymond, Nicolas Magnetic Effects in Curved Quantum Waveguides, Ann. Henri Poincaré, Volume 15 (2014) no. 10, pp. 1993-2024 | DOI

[13] Lampart, Jonas; Teufel, Stefan The adiabatic limit of the Laplacian on thin fibre bundles, Microlocal methods in mathematical physics and global analysis (Trends Math.), Birkhäuser/Springer, Basel, 2013, pp. 33-36 | DOI

[14] Levitin, Michael; Parnovski, Leonid On the principal eigenvalue of a Robin problem with a large parameter, Math. Nachr., Volume 281 (2008) no. 2, pp. 272-281 | DOI

[15] Martinez, André; Messirdi, Bekkai Resonances of diatomic molecules in the Born-Oppenheimer approximation, Comm. Partial Differential Equations, Volume 19 (1994) no. 7-8, pp. 1139-1162 | DOI

[16] Martinez, André; Sordoni, Vania A general reduction scheme for the time-dependent Born-Oppenheimer approximation, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 3, pp. 185-188 | DOI

[17] Morame, Abderemane; Truc, Françoise Remarks on the spectrum of the Neumann problem with magnetic field in the half-space, J. Math. Phys., Volume 46 (2005) no. 1, 012105, 13 pages | DOI

[18] Panati, Gianluca; Spohn, Herbert; Teufel, Stefan Space-adiabatic perturbation theory, Adv. Theor. Math. Phys., Volume 7 (2003) no. 1, pp. 145-204 http://projecteuclid.org/euclid.atmp/1112627977

[19] Panati, Gianluca; Spohn, Herbert; Teufel, Stefan The time-dependent Born-Oppenheimer approximation, M2AN Math. Model. Numer. Anal., Volume 41 (2007) no. 2, pp. 297-314 | DOI

[20] Pankrashkin, K.; Popoff, N. An effective Hamiltonian for the eigenvalues asymptotics of a Robin Laplacian with a large parameter, J. Math. Pures Appl., Volume 106 (2016), pp. 615-650

[21] Raymond, N. Bound States of the Magnetic Schrödinger Operator, EMS Tracts, 27, Europ. Math. Soc., 2017

[22] Teufel, Stefan Adiabatic perturbation theory in quantum dynamics, Lecture Notes in Mathematics, 1821, Springer-Verlag, Berlin, 2003, vi+236 pages | DOI

[23] Wachsmuth, Jakob; Teufel, Stefan Effective Hamiltonians for constrained quantum systems, Mem. Amer. Math. Soc., Volume 230 (2014) no. 1083, vi+83 pages

[24] Zworski, Maciej Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, Providence, RI, 2012, xii+431 pages

Cité par Sources :