Voir la notice de l'article provenant de la source Numdam
This paper is devoted to establish semiclassical Weyl formulae for the Robin Laplacian on smooth domains in any dimension. Theirs proofs are reminiscent of the Born-Oppenheimer method.
Kachmar, Ayman 1 ; Keraval, Pierig 2 ; Raymond, Nicolas 2
@article{CML_2016__8_2_39_0, author = {Kachmar, Ayman and Keraval, Pierig and Raymond, Nicolas}, title = {Weyl formulae for the {Robin} {Laplacian} in the semiclassical limit}, journal = {Confluentes Mathematici}, pages = {39--57}, publisher = {Institut Camille Jordan}, volume = {8}, number = {2}, year = {2016}, doi = {10.5802/cml.32}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/cml.32/} }
TY - JOUR AU - Kachmar, Ayman AU - Keraval, Pierig AU - Raymond, Nicolas TI - Weyl formulae for the Robin Laplacian in the semiclassical limit JO - Confluentes Mathematici PY - 2016 SP - 39 EP - 57 VL - 8 IS - 2 PB - Institut Camille Jordan UR - http://geodesic.mathdoc.fr/articles/10.5802/cml.32/ DO - 10.5802/cml.32 LA - en ID - CML_2016__8_2_39_0 ER -
%0 Journal Article %A Kachmar, Ayman %A Keraval, Pierig %A Raymond, Nicolas %T Weyl formulae for the Robin Laplacian in the semiclassical limit %J Confluentes Mathematici %D 2016 %P 39-57 %V 8 %N 2 %I Institut Camille Jordan %U http://geodesic.mathdoc.fr/articles/10.5802/cml.32/ %R 10.5802/cml.32 %G en %F CML_2016__8_2_39_0
Kachmar, Ayman; Keraval, Pierig; Raymond, Nicolas. Weyl formulae for the Robin Laplacian in the semiclassical limit. Confluentes Mathematici, Tome 8 (2016) no. 2, pp. 39-57. doi : 10.5802/cml.32. http://geodesic.mathdoc.fr/articles/10.5802/cml.32/
[1] Asymptotique semi-classique du spectre pour des opérateurs à symbole opératoriel, C. R. Acad. Sci. Paris Sér. I Math., Volume 301 (1985) no. 20, pp. 903-906
[2] Magnetic WKB Constructions, Arch. Ration. Mech. Anal., Volume 221 (2016) no. 2, pp. 817-891 | DOI
[3] L’asymptotique de Weyl pour les bouteilles magnétiques, Comm. Math. Phys., Volume 105 (1986) no. 2, pp. 327-335 http://projecteuclid.org/...
[4] Schrödinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987, x+319 pages
[5] Spectral asymptotics of a broken -interaction, J. Phys. A, Volume 47 (2014) no. 15, 155203, 19 pages | DOI
[6] Asymptotic eigenvalue estimates for a Robin problem with a large parameter, Port. Math., Volume 71 (2014) no. 2, pp. 141-156 | DOI
[7] Eigenvalues for the Robin Laplacian in domains with variable curvature, Trans. Amer. Math. Soc., Volume 369 (2017) no. 5, pp. 3253-3287
[8] Tunneling for the Robin Laplacian in smooth planar domains, Contemp. Math., Volume 19 (2017) no. 1, 1650030 (38 pages) pages
[9] Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, 1336, Springer-Verlag, Berlin, 1988, vi+107 pages
[10] On the mathematical treatment of the Born-Oppenheimer approximation, J. Math. Phys., Volume 55 (2014) no. 5, 053504, 26 pages | DOI
[11] On the Born-Oppenheimer expansion for polyatomic molecules, Comm. Math. Phys., Volume 143 (1992) no. 3, pp. 607-639 http://projecteuclid.org/euclid.cmp/1104249085
[12] Magnetic Effects in Curved Quantum Waveguides, Ann. Henri Poincaré, Volume 15 (2014) no. 10, pp. 1993-2024 | DOI
[13] The adiabatic limit of the Laplacian on thin fibre bundles, Microlocal methods in mathematical physics and global analysis (Trends Math.), Birkhäuser/Springer, Basel, 2013, pp. 33-36 | DOI
[14] On the principal eigenvalue of a Robin problem with a large parameter, Math. Nachr., Volume 281 (2008) no. 2, pp. 272-281 | DOI
[15] Resonances of diatomic molecules in the Born-Oppenheimer approximation, Comm. Partial Differential Equations, Volume 19 (1994) no. 7-8, pp. 1139-1162 | DOI
[16] A general reduction scheme for the time-dependent Born-Oppenheimer approximation, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 3, pp. 185-188 | DOI
[17] Remarks on the spectrum of the Neumann problem with magnetic field in the half-space, J. Math. Phys., Volume 46 (2005) no. 1, 012105, 13 pages | DOI
[18] Space-adiabatic perturbation theory, Adv. Theor. Math. Phys., Volume 7 (2003) no. 1, pp. 145-204 http://projecteuclid.org/euclid.atmp/1112627977
[19] The time-dependent Born-Oppenheimer approximation, M2AN Math. Model. Numer. Anal., Volume 41 (2007) no. 2, pp. 297-314 | DOI
[20] An effective Hamiltonian for the eigenvalues asymptotics of a Robin Laplacian with a large parameter, J. Math. Pures Appl., Volume 106 (2016), pp. 615-650
[21] Bound States of the Magnetic Schrödinger Operator, EMS Tracts, 27, Europ. Math. Soc., 2017
[22] Adiabatic perturbation theory in quantum dynamics, Lecture Notes in Mathematics, 1821, Springer-Verlag, Berlin, 2003, vi+236 pages | DOI
[23] Effective Hamiltonians for constrained quantum systems, Mem. Amer. Math. Soc., Volume 230 (2014) no. 1083, vi+83 pages
[24] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, Providence, RI, 2012, xii+431 pages
Cité par Sources :