Voir la notice de l'article provenant de la source Numdam
Using the Nagy dilation of linear contractions on Hilbert space and the Stinespring’s theorem for completely positive maps, we prove that any quantum dynamical system admits a dilation in the sense of Muhly and Solel which satisfies the same ergodic properties of the original quantum dynamical system.
Pandiscia, Carlo 1
@article{CML_2014__6_1_77_0, author = {Pandiscia, Carlo}, title = {Ergodic {Dilation} of a {Quantum} {Dynamical} {System}}, journal = {Confluentes Mathematici}, pages = {77--93}, publisher = {Institut Camille Jordan}, volume = {6}, number = {1}, year = {2014}, doi = {10.5802/cml.14}, mrnumber = {3266886}, zbl = {1323.46045}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/cml.14/} }
Pandiscia, Carlo. Ergodic Dilation of a Quantum Dynamical System. Confluentes Mathematici, Tome 6 (2014) no. 1, pp. 77-93. doi : 10.5802/cml.14. http://geodesic.mathdoc.fr/articles/10.5802/cml.14/
[1] L. Accardi and C. Cecchini. Conditional expectations in von Neumann algebras and a theorem of Takesaki, J. Funct. Ana., 45:245–273, 1982. | Zbl | DOI | MR
[2] W. Arveson. Non commutative dynamics and Eo-semigroups, Monograph in mathematics, Springer-Verlag, 2003. | DOI | MR
[3] B.V. Bath and K.R. Parthasarathy. Markov dilations of nonconservative dynamical semigroups and quantum boundary theory, Ann. I.H.P. sec. B, 31(4):601–651, 1995. | Zbl | mathdoc-id
[4] D. E. Evans and J. T. Lewis. Dilations of dynamical semi-groups, Comm. Math. Phys., 50(3):219–227, 1976. | Zbl | DOI | MR
[5] A. Frigerio, V.Gorini, A. Kossakowski and M. Verri. Quantum detailed balance and KMS condition, Commun. Math. Phys., 57:97–110, 1977. | Zbl | DOI | MR
[6] B. Kümmerer. Markov dilations on W*-algebras, J. Funct. Ana., 63:139–177, 1985. | Zbl | DOI | MR
[7] W.A. Majewski. On the relationship between the reversibility of dynamics and balance conditions, Ann. I. H. P. sec. A, 39(1):45–54, 1983. | Zbl | mathdoc-id
[8] P.S. Muhly and B. Solel. Quantum Markov Processes (correspondeces and dilations), Int. J. Math., 13(8):863–906, 2002. | Zbl | DOI | MR
[9] B.Sz. Nagy and C. Foiaş. Harmonic analysis of operators on Hilbert space, Regional Conf. Ser. Math., 19, 1971. | Zbl
[10] C. Niculescu, A. Ströh and L.Zsidó. Noncommutative extensions of classical and multiple recurrence theorems, J. Oper. Th., 50:3–52, 2002. | Zbl
[11] V.I. Paulsen. Completely bounded maps and dilations, Pitman Res. Notes Math. 146, Longman Scientific & Technical, 1986. | Zbl | DOI
[12] M. Skeide. Dilation theory and continuous tensor product systems of Hilbert modules, in: PQ-QP: Quantum Probability and White Noise Analysis XV, World Scientific, 2003. | Zbl | DOI
[13] F. Stinesring. Positive functions on C* algebras, Proc. Amer. Math. Soc., 6:211–216, 1955. | DOI | MR
[14] L. Zsido. Personal communication, 2008.
Cité par Sources :