Ergodic Dilation of a Quantum Dynamical System
Confluentes Mathematici, Tome 6 (2014) no. 1, pp. 77-93.

Voir la notice de l'article provenant de la source Numdam

Using the Nagy dilation of linear contractions on Hilbert space and the Stinespring’s theorem for completely positive maps, we prove that any quantum dynamical system admits a dilation in the sense of Muhly and Solel which satisfies the same ergodic properties of the original quantum dynamical system.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/cml.14
Classification : 46L07, 46L55, 46L57
Keywords: Quantum Markov process, completely positive maps, Nagy dilation, ergodic state.

Pandiscia, Carlo 1

1 Universitá degli Studi di Roma “Tor Vergata”, Dipartimento di Ingegneria Elettronica, via del Politecnico, 00133 Roma, Italia
@article{CML_2014__6_1_77_0,
     author = {Pandiscia, Carlo},
     title = {Ergodic {Dilation} of a {Quantum} {Dynamical} {System}},
     journal = {Confluentes Mathematici},
     pages = {77--93},
     publisher = {Institut Camille Jordan},
     volume = {6},
     number = {1},
     year = {2014},
     doi = {10.5802/cml.14},
     mrnumber = {3266886},
     zbl = {1323.46045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/cml.14/}
}
TY  - JOUR
AU  - Pandiscia, Carlo
TI  - Ergodic Dilation of a Quantum Dynamical System
JO  - Confluentes Mathematici
PY  - 2014
SP  - 77
EP  - 93
VL  - 6
IS  - 1
PB  - Institut Camille Jordan
UR  - http://geodesic.mathdoc.fr/articles/10.5802/cml.14/
DO  - 10.5802/cml.14
LA  - en
ID  - CML_2014__6_1_77_0
ER  - 
%0 Journal Article
%A Pandiscia, Carlo
%T Ergodic Dilation of a Quantum Dynamical System
%J Confluentes Mathematici
%D 2014
%P 77-93
%V 6
%N 1
%I Institut Camille Jordan
%U http://geodesic.mathdoc.fr/articles/10.5802/cml.14/
%R 10.5802/cml.14
%G en
%F CML_2014__6_1_77_0
Pandiscia, Carlo. Ergodic Dilation of a Quantum Dynamical System. Confluentes Mathematici, Tome 6 (2014) no. 1, pp. 77-93. doi : 10.5802/cml.14. http://geodesic.mathdoc.fr/articles/10.5802/cml.14/

[1] L. Accardi and C. Cecchini. Conditional expectations in von Neumann algebras and a theorem of Takesaki, J. Funct. Ana., 45:245–273, 1982. | Zbl | DOI | MR

[2] W. Arveson. Non commutative dynamics and Eo-semigroups, Monograph in mathematics, Springer-Verlag, 2003. | DOI | MR

[3] B.V. Bath and K.R. Parthasarathy. Markov dilations of nonconservative dynamical semigroups and quantum boundary theory, Ann. I.H.P. sec. B, 31(4):601–651, 1995. | Zbl | mathdoc-id

[4] D. E. Evans and J. T. Lewis. Dilations of dynamical semi-groups, Comm. Math. Phys., 50(3):219–227, 1976. | Zbl | DOI | MR

[5] A. Frigerio, V.Gorini, A. Kossakowski and M. Verri. Quantum detailed balance and KMS condition, Commun. Math. Phys., 57:97–110, 1977. | Zbl | DOI | MR

[6] B. Kümmerer. Markov dilations on W*-algebras, J. Funct. Ana., 63:139–177, 1985. | Zbl | DOI | MR

[7] W.A. Majewski. On the relationship between the reversibility of dynamics and balance conditions, Ann. I. H. P. sec. A, 39(1):45–54, 1983. | Zbl | mathdoc-id

[8] P.S. Muhly and B. Solel. Quantum Markov Processes (correspondeces and dilations), Int. J. Math., 13(8):863–906, 2002. | Zbl | DOI | MR

[9] B.Sz. Nagy and C. Foiaş. Harmonic analysis of operators on Hilbert space, Regional Conf. Ser. Math., 19, 1971. | Zbl

[10] C. Niculescu, A. Ströh and L.Zsidó. Noncommutative extensions of classical and multiple recurrence theorems, J. Oper. Th., 50:3–52, 2002. | Zbl

[11] V.I. Paulsen. Completely bounded maps and dilations, Pitman Res. Notes Math. 146, Longman Scientific & Technical, 1986. | Zbl | DOI

[12] M. Skeide. Dilation theory and continuous tensor product systems of Hilbert modules, in: PQ-QP: Quantum Probability and White Noise Analysis XV, World Scientific, 2003. | Zbl | DOI

[13] F. Stinesring. Positive functions on C* algebras, Proc. Amer. Math. Soc., 6:211–216, 1955. | DOI | MR

[14] L. Zsido. Personal communication, 2008.

Cité par Sources :