Voir la notice de l'article provenant de la source Numdam
In this paper, we introduce the notion of “geodesic cover” for Fuchsian groups, which summons copies of fundamental polygons in the hyperbolic plane to cover pairs of representatives realizing distances in the corresponding hyperbolic surface. Then we use estimates of geodesic-covering numbers to study the distinct distances problem in hyperbolic surfaces. Especially, for from a large class of hyperbolic surfaces, we establish the nearly optimal bound for distinct distances determined by any points in , where is some constant depending only on . In particular, for being modular surface or standard regular of genus , we evaluate explicitly in terms of .
Lu, Zhipeng 1 ; Meng, Xianchang 2
@article{AMBP_2023__30_2_201_0, author = {Lu, Zhipeng and Meng, Xianchang}, title = {Geodesic covers and {Erd\H{o}s} distinct distances in hyperbolic surfaces}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {201--217}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {30}, number = {2}, year = {2023}, doi = {10.5802/ambp.422}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/ambp.422/} }
TY - JOUR AU - Lu, Zhipeng AU - Meng, Xianchang TI - Geodesic covers and Erdős distinct distances in hyperbolic surfaces JO - Annales mathématiques Blaise Pascal PY - 2023 SP - 201 EP - 217 VL - 30 IS - 2 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - http://geodesic.mathdoc.fr/articles/10.5802/ambp.422/ DO - 10.5802/ambp.422 LA - en ID - AMBP_2023__30_2_201_0 ER -
%0 Journal Article %A Lu, Zhipeng %A Meng, Xianchang %T Geodesic covers and Erdős distinct distances in hyperbolic surfaces %J Annales mathématiques Blaise Pascal %D 2023 %P 201-217 %V 30 %N 2 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U http://geodesic.mathdoc.fr/articles/10.5802/ambp.422/ %R 10.5802/ambp.422 %G en %F AMBP_2023__30_2_201_0
Lu, Zhipeng; Meng, Xianchang. Geodesic covers and Erdős distinct distances in hyperbolic surfaces. Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 2, pp. 201-217. doi: 10.5802/ambp.422
Cité par Sources :