Geodesic covers and Erdős distinct distances in hyperbolic surfaces
Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 2, pp. 201-217

Voir la notice de l'article provenant de la source Numdam

In this paper, we introduce the notion of “geodesic cover” for Fuchsian groups, which summons copies of fundamental polygons in the hyperbolic plane to cover pairs of representatives realizing distances in the corresponding hyperbolic surface. Then we use estimates of geodesic-covering numbers to study the distinct distances problem in hyperbolic surfaces. Especially, for Y from a large class of hyperbolic surfaces, we establish the nearly optimal bound c(Y)N/logN for distinct distances determined by any N points in Y, where c(Y)>0 is some constant depending only on Y. In particular, for Y being modular surface or standard regular of genus g2, we evaluate c(Y) explicitly in terms of g.

Publié le :
DOI : 10.5802/ambp.422
Classification : 52C10, 11P21, 20H10
Keywords: Erdős distinct distances, hyperbolic surface, hyperbolic circle problem, equilateral dimension

Lu, Zhipeng 1 ; Meng, Xianchang 2

1 Shenzhen MSU-BIT University & Guangdong Laboratory of Machine Perception and Intelligent Computing Shenzhen, Guangdong 518172, China
2 School of Mathematics Shandong University, Jinan Shandong 250100, China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2023__30_2_201_0,
     author = {Lu, Zhipeng and Meng, Xianchang},
     title = {Geodesic covers and {Erd\H{o}s} distinct distances in hyperbolic surfaces},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {201--217},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {30},
     number = {2},
     year = {2023},
     doi = {10.5802/ambp.422},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/ambp.422/}
}
TY  - JOUR
AU  - Lu, Zhipeng
AU  - Meng, Xianchang
TI  - Geodesic covers and Erdős distinct distances in hyperbolic surfaces
JO  - Annales mathématiques Blaise Pascal
PY  - 2023
SP  - 201
EP  - 217
VL  - 30
IS  - 2
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - http://geodesic.mathdoc.fr/articles/10.5802/ambp.422/
DO  - 10.5802/ambp.422
LA  - en
ID  - AMBP_2023__30_2_201_0
ER  - 
%0 Journal Article
%A Lu, Zhipeng
%A Meng, Xianchang
%T Geodesic covers and Erdős distinct distances in hyperbolic surfaces
%J Annales mathématiques Blaise Pascal
%D 2023
%P 201-217
%V 30
%N 2
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U http://geodesic.mathdoc.fr/articles/10.5802/ambp.422/
%R 10.5802/ambp.422
%G en
%F AMBP_2023__30_2_201_0
Lu, Zhipeng; Meng, Xianchang. Geodesic covers and Erdős distinct distances in hyperbolic surfaces. Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 2, pp. 201-217. doi: 10.5802/ambp.422

Cité par Sources :