Voir la notice de l'article provenant de la source Numdam
We study unions of fundamental domains of a Fuchsian group, especially those with hyperbolic plane metric realizing the metric of the corresponding hyperbolic surface. We call these unions the geodesic covers of the Fuchsian group or the hyperbolic surface. The paper contributes to showing that finiteness of geodesic covers is basically another characterization of geometrically finiteness. The resolution of geometrically finite case is based on Shimizu’s lemma.
Lu, Zhipeng 1
@article{AMBP_2023__30_2_189_0, author = {Lu, Zhipeng}, title = {Geodesic cover of {Fuchsian} groups}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {189--199}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {30}, number = {2}, year = {2023}, doi = {10.5802/ambp.421}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/ambp.421/} }
TY - JOUR AU - Lu, Zhipeng TI - Geodesic cover of Fuchsian groups JO - Annales mathématiques Blaise Pascal PY - 2023 SP - 189 EP - 199 VL - 30 IS - 2 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - http://geodesic.mathdoc.fr/articles/10.5802/ambp.421/ DO - 10.5802/ambp.421 LA - en ID - AMBP_2023__30_2_189_0 ER -
%0 Journal Article %A Lu, Zhipeng %T Geodesic cover of Fuchsian groups %J Annales mathématiques Blaise Pascal %D 2023 %P 189-199 %V 30 %N 2 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U http://geodesic.mathdoc.fr/articles/10.5802/ambp.421/ %R 10.5802/ambp.421 %G en %F AMBP_2023__30_2_189_0
Lu, Zhipeng. Geodesic cover of Fuchsian groups. Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 2, pp. 189-199. doi: 10.5802/ambp.421
Cité par Sources :