Voir la notice de l'article provenant de la source Numdam
We define an extension operator and study boundedness of Hardy–Littlewood–Sobolev inequality and weighted Hardy–Littlewood–Sobolev inequality on upper Half space for the Dunkl transform.
Anoop, V. P. 1 ; Parui, Sanjay 2, 3
@article{AMBP_2021__28_2_117_0, author = {Anoop, V. P. and Parui, Sanjay}, title = {Hardy{\textendash}Littlewood{\textendash}Sobolev {Inequality} for {Upper} {Half} {Space}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {117--140}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {28}, number = {2}, year = {2021}, doi = {10.5802/ambp.401}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/ambp.401/} }
TY - JOUR AU - Anoop, V. P. AU - Parui, Sanjay TI - Hardy–Littlewood–Sobolev Inequality for Upper Half Space JO - Annales mathématiques Blaise Pascal PY - 2021 SP - 117 EP - 140 VL - 28 IS - 2 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - http://geodesic.mathdoc.fr/articles/10.5802/ambp.401/ DO - 10.5802/ambp.401 LA - en ID - AMBP_2021__28_2_117_0 ER -
%0 Journal Article %A Anoop, V. P. %A Parui, Sanjay %T Hardy–Littlewood–Sobolev Inequality for Upper Half Space %J Annales mathématiques Blaise Pascal %D 2021 %P 117-140 %V 28 %N 2 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U http://geodesic.mathdoc.fr/articles/10.5802/ambp.401/ %R 10.5802/ambp.401 %G en %F AMBP_2021__28_2_117_0
Anoop, V. P.; Parui, Sanjay. Hardy–Littlewood–Sobolev Inequality for Upper Half Space. Annales mathématiques Blaise Pascal, Tome 28 (2021) no. 2, pp. 117-140. doi : 10.5802/ambp.401. http://geodesic.mathdoc.fr/articles/10.5802/ambp.401/
[1] Higher Transcendental Functions, Macgraw Hill Book Company, 1953
[2] Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Not., Volume 2015 (2015) no. 3, pp. 651-687 | DOI | MR | Zbl
[3] Two results on the Dunkl maximal operator, Stud. Math., Volume 203 (2011) no. 1, pp. 47-68 | DOI | MR | Zbl
[4] Weighted Hardy–Littlewood–Sobolev inequalities on the upper half space, Commun. Contemp. Math., Volume 18 (2016) no. 5, 1550067, 20 pages | MR | Zbl
[5] Positive -bounded Dunkl-type generalized translation operator and its applications, Constr. Approx., Volume 49 (2019), pp. 555-605 | MR | Zbl | DOI
[6] Riesz potential and maximal function for Dunkl transform, Potential Anal., Volume 55 (2021), pp. 513-538 | MR | Zbl | DOI
[7] Dunkl operators: theory and applications, Orthogonal Polynomials and Special Functions (Lecture Notes in Mathematics), Volume 1817, Springer, 2003 | DOI | MR | Zbl
[8] Fractional integrals on dimensional Euclidean space, J. Math. Mech., Volume 7 (1958), pp. 503-514 | MR | Zbl
[9] Convolution operator and maximal function for the Dunkl transform, J. Anal. Math., Volume 97 (2005), pp. 25-55 | DOI | MR | Zbl
[10] Riesz transform and Riesz potentials for Dunkl transform, J. Comput. Appl. Math., Volume 199 (2007), pp. 181-195 | DOI | MR | Zbl
Cité par Sources :