An -Cheeger Müller theorem on compact manifolds with boundary
Annales mathématiques Blaise Pascal, Tome 28 (2021) no. 1, pp. 71-116
Cet article a éte moissonné depuis la source Numdam
We generalize a Cheeger–Müller type theorem for flat, unitary bundles on infinite covering spaces over manifolds with boundary, proven by Burghelea, Friedlander and Kappeller. Employing recent anomaly results by Brüning, Ma and Zhang, we prove an analogous statement for a general flat bundle that is only required to have a unimodular restriction to the boundary.
Publié le :
DOI :
10.5802/ambp.400
Affiliations des auteurs :
Waßermann, Benjamin 1
Licence :
CC-BY 4.0
CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2021__28_1_71_0,
author = {Wa{\ss}ermann, Benjamin},
title = {An $L^2${-Cheeger} {M\"uller} theorem on compact manifolds with boundary},
journal = {Annales math\'ematiques Blaise Pascal},
pages = {71--116},
year = {2021},
publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
volume = {28},
number = {1},
doi = {10.5802/ambp.400},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/ambp.400/}
}
TY - JOUR AU - Waßermann, Benjamin TI - An $L^2$-Cheeger Müller theorem on compact manifolds with boundary JO - Annales mathématiques Blaise Pascal PY - 2021 SP - 71 EP - 116 VL - 28 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - http://geodesic.mathdoc.fr/articles/10.5802/ambp.400/ DO - 10.5802/ambp.400 LA - en ID - AMBP_2021__28_1_71_0 ER -
%0 Journal Article %A Waßermann, Benjamin %T An $L^2$-Cheeger Müller theorem on compact manifolds with boundary %J Annales mathématiques Blaise Pascal %D 2021 %P 71-116 %V 28 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U http://geodesic.mathdoc.fr/articles/10.5802/ambp.400/ %R 10.5802/ambp.400 %G en %F AMBP_2021__28_1_71_0
Waßermann, Benjamin. An $L^2$-Cheeger Müller theorem on compact manifolds with boundary. Annales mathématiques Blaise Pascal, Tome 28 (2021) no. 1, pp. 71-116. doi: 10.5802/ambp.400
Cité par Sources :