Well-posedness of the Green–Naghdi and Boussinesq–Peregrine systems
Annales mathématiques Blaise Pascal, Tome 25 (2018) no. 1, pp. 21-74 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

In this paper we address the Cauchy problem for two systems modeling the propagation of long gravity waves in a layer of homogeneous, incompressible and inviscid fluid delimited above by a free surface, and below by a non-necessarily flat rigid bottom. Concerning the Green–Naghdi system, we improve the result of Alvarez–Samaniego and Lannes [5] in the sense that much less regular data are allowed, and no loss of derivatives is involved. Concerning the Boussinesq–Peregrine system, we improve the lower bound on the time of existence provided by Mésognon-Gireau [40]. The main ingredient is a physically motivated change of unknowns revealing the quasilinear structure of the systems, from which energy methods are implemented.

Publié le :
DOI : 10.5802/ambp.372
Classification : 35L45, 35Q35, 76B15
Keywords: Well-posedness theory, shallow water models, quasilinear dispersive systems

Duchêne, Vincent 1 ; Israwi, Samer 2

1 Univ. Rennes 1, CNRS, IRMAR - UMR 6625, 35000 Rennes, France
2 Mathématiques, Faculté des sciences I et École doctorale des sciences et technologie Université Libanaise Beyrouth, Liban
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2018__25_1_21_0,
     author = {Duch\^ene, Vincent and Israwi, Samer},
     title = {Well-posedness of the {Green{\textendash}Naghdi} and {Boussinesq{\textendash}Peregrine} systems},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {21--74},
     year = {2018},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {25},
     number = {1},
     doi = {10.5802/ambp.372},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/ambp.372/}
}
TY  - JOUR
AU  - Duchêne, Vincent
AU  - Israwi, Samer
TI  - Well-posedness of the Green–Naghdi and Boussinesq–Peregrine systems
JO  - Annales mathématiques Blaise Pascal
PY  - 2018
SP  - 21
EP  - 74
VL  - 25
IS  - 1
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - http://geodesic.mathdoc.fr/articles/10.5802/ambp.372/
DO  - 10.5802/ambp.372
LA  - en
ID  - AMBP_2018__25_1_21_0
ER  - 
%0 Journal Article
%A Duchêne, Vincent
%A Israwi, Samer
%T Well-posedness of the Green–Naghdi and Boussinesq–Peregrine systems
%J Annales mathématiques Blaise Pascal
%D 2018
%P 21-74
%V 25
%N 1
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U http://geodesic.mathdoc.fr/articles/10.5802/ambp.372/
%R 10.5802/ambp.372
%G en
%F AMBP_2018__25_1_21_0
Duchêne, Vincent; Israwi, Samer. Well-posedness of the Green–Naghdi and Boussinesq–Peregrine systems. Annales mathématiques Blaise Pascal, Tome 25 (2018) no. 1, pp. 21-74. doi: 10.5802/ambp.372

Cité par Sources :