Voir la notice de l'article provenant de la source Numdam
In this paper, we shall be concerned with the existence result of the Degenerated unilateral problem associated to the equation of the type where is a Leray-Lions operator and is a Carathéodory function having natural growth with respect to and satisfying the sign condition. The second term is such that, and .
Aharouch, Lahsen 1 ; Akdim, Youssef 1
@article{AMBP_2004__11_1_47_0, author = {Aharouch, Lahsen and Akdim, Youssef}, title = {Existence of solutions of degenerated unilateral problems with $L^1$ data}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {47--66}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {11}, number = {1}, year = {2004}, doi = {10.5802/ambp.185}, zbl = {02207858}, mrnumber = {2077238}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/ambp.185/} }
TY - JOUR AU - Aharouch, Lahsen AU - Akdim, Youssef TI - Existence of solutions of degenerated unilateral problems with $L^1$ data JO - Annales mathématiques Blaise Pascal PY - 2004 SP - 47 EP - 66 VL - 11 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://geodesic.mathdoc.fr/articles/10.5802/ambp.185/ DO - 10.5802/ambp.185 LA - en ID - AMBP_2004__11_1_47_0 ER -
%0 Journal Article %A Aharouch, Lahsen %A Akdim, Youssef %T Existence of solutions of degenerated unilateral problems with $L^1$ data %J Annales mathématiques Blaise Pascal %D 2004 %P 47-66 %V 11 %N 1 %I Annales mathématiques Blaise Pascal %U http://geodesic.mathdoc.fr/articles/10.5802/ambp.185/ %R 10.5802/ambp.185 %G en %F AMBP_2004__11_1_47_0
Aharouch, Lahsen; Akdim, Youssef. Existence of solutions of degenerated unilateral problems with $L^1$ data. Annales mathématiques Blaise Pascal, Tome 11 (2004) no. 1, pp. 47-66. doi : 10.5802/ambp.185. http://geodesic.mathdoc.fr/articles/10.5802/ambp.185/
[1] Existence of solutions for quasilinear degenerated elliptic equations, Electronic J. Diff. Eqns., Volume 2001 (2001) no. 71, pp. 1-19 | Zbl | MR
[2] Existence of Solution for Quasilinear Degenerated Elliptic Unilateral Problems, Annale Mathématique Blaise Pascal, Volume 10 (2003), pp. 1-20 | DOI | Zbl | MR | mathdoc-id
[3] Strongly nonlinear degenerated unilateral problems with data, Electronic J. Diff. Eqns. (Conf. 09. 2002), pp. 46-64 | Zbl
[4] An -theory of existence and uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa, Volume 22 (1995), pp. 240-273 | MR | mathdoc-id
[5] Non-linear Elliptic Equations with right hand side Measures, commun. In partial Differential Equations, Volume 17 (1992), pp. 641-655 | Zbl | MR
[6] Strongly non-linear Elliptic Equations having natural growth and data, Nonlinear Anal., Volume 19 (1992), pp. 573-578 | DOI | Zbl | MR
[7] A unified presentation of tow existence results for problems with natural growth, in : Progress in Partial Differential Equations : The Metz Surveys 2, M. Chipot (ed), Pitman Res. Notes Math. Ser. 296, Longman (1993), pp. 127-137 | Zbl | MR
[8] Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Math. Pura Appl., Volume 152 (1988), pp. 183-196 | DOI | Zbl | MR
[9] Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup Pisa Cl. Sci, Volume 12 (1999) no. 4, pp. 741-808 | Zbl | MR | mathdoc-id
[10] Nonlinear elliptic equations, singular and degenerate cases, University of West Bohemia, 1996
[11] Unilateral elleptic problems in with natural growth terms (To appear Nonlinear and convex analysis) | Zbl | MR
[12] Existence for elliptic equations in having lower order terms with natural growth, Portugal. Math., Volume 57 (2000), pp. 179-190 | Zbl | MR
Cité par Sources :