Hilbert series for twisted commutative algebras
Algebraic Combinatorics, Tome 1 (2018) no. 1, pp. 147-172
Cet article a éte moissonné depuis la source Numdam
Suppose that for each we have a representation of the symmetric group . Such sequences arise in a wide variety of contexts, and often exhibit uniformity in some way. We prove a number of general results along these lines in this paper: our prototypical theorem states that if can be given a suitable module structure over a twisted commutative algebra then the sequence follows a predictable pattern. We phrase these results precisely in the language of Hilbert series (or Poincaré series, or formal characters) of modules over tca’s.
Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.9
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.9
Classification :
05E05, 13A50
Affiliations des auteurs :
Sam, Steven V 1 ; Snowden, Andrew 2
Licence :
CC-BY 4.0
CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2018__1_1_147_0,
author = {Sam, Steven V and Snowden, Andrew},
title = {Hilbert series for twisted commutative algebras},
journal = {Algebraic Combinatorics},
pages = {147--172},
year = {2018},
publisher = {MathOA foundation},
volume = {1},
number = {1},
doi = {10.5802/alco.9},
zbl = {06882338},
mrnumber = {3857163},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.9/}
}
TY - JOUR AU - Sam, Steven V AU - Snowden, Andrew TI - Hilbert series for twisted commutative algebras JO - Algebraic Combinatorics PY - 2018 SP - 147 EP - 172 VL - 1 IS - 1 PB - MathOA foundation UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.9/ DO - 10.5802/alco.9 LA - en ID - ALCO_2018__1_1_147_0 ER -
Sam, Steven V; Snowden, Andrew. Hilbert series for twisted commutative algebras. Algebraic Combinatorics, Tome 1 (2018) no. 1, pp. 147-172. doi: 10.5802/alco.9
Cité par Sources :