Voir la notice de l'article provenant de la source Numdam
In 2013, Chan classified all metric hyperelliptic graphs, proving that divisorial gonality and geometric gonality are equivalent in the hyperelliptic case. We show that such a classification extends to combinatorial graphs of divisorial gonality three, under certain edge- and vertex-connectivity assumptions. We also give a construction for graphs of divisorial gonality three, and provide conditions for determining when a graph is not of divisorial gonality three.
Aidun, Ivan 1 ; Dean, Frances 2 ; Morrison, Ralph 2 ; Yu, Teresa 3 ; Yuan, Julie 4
@article{ALCO_2019__2_6_1197_0, author = {Aidun, Ivan and Dean, Frances and Morrison, Ralph and Yu, Teresa and Yuan, Julie}, title = {Graphs of gonality three}, journal = {Algebraic Combinatorics}, pages = {1197--1217}, publisher = {MathOA foundation}, volume = {2}, number = {6}, year = {2019}, doi = {10.5802/alco.80}, mrnumber = {4049843}, zbl = {07140430}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.80/} }
TY - JOUR AU - Aidun, Ivan AU - Dean, Frances AU - Morrison, Ralph AU - Yu, Teresa AU - Yuan, Julie TI - Graphs of gonality three JO - Algebraic Combinatorics PY - 2019 SP - 1197 EP - 1217 VL - 2 IS - 6 PB - MathOA foundation UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.80/ DO - 10.5802/alco.80 LA - en ID - ALCO_2019__2_6_1197_0 ER -
%0 Journal Article %A Aidun, Ivan %A Dean, Frances %A Morrison, Ralph %A Yu, Teresa %A Yuan, Julie %T Graphs of gonality three %J Algebraic Combinatorics %D 2019 %P 1197-1217 %V 2 %N 6 %I MathOA foundation %U http://geodesic.mathdoc.fr/articles/10.5802/alco.80/ %R 10.5802/alco.80 %G en %F ALCO_2019__2_6_1197_0
Aidun, Ivan; Dean, Frances; Morrison, Ralph; Yu, Teresa; Yuan, Julie. Graphs of gonality three. Algebraic Combinatorics, Tome 2 (2019) no. 6, pp. 1197-1217. doi : 10.5802/alco.80. http://geodesic.mathdoc.fr/articles/10.5802/alco.80/
[1] Specialization of linear systems from curves to graphs, Algebra and Number Theory, Volume 2 (2008) no. 6, pp. 613-653 | MR | DOI | Zbl
[2] Riemann–Roch and Abel–Jacobi theory on a finite graph, Advances in Mathematics, Volume 215 (2007), pp. 766-788 | MR | DOI | Zbl
[3] Harmonic morphisms and hyperelliptic graphs, International Math Research Notices (2009), pp. 2914-2955 | Zbl
[4] Chip-firing games, potential theory on graphs, and spanning trees, Journal of Combinatorial Theory. Series A, Volume 120 (2013), pp. 164-182 | MR | DOI | Zbl
[5] Recognizing Hyperelliptic Graphs in Polynomial Time, Graph-Theoretic Concepts in Computer Science - 44th International Workshop, WG 2018, Cottbus, Germany, June 27-29, 2018, Proceedings (2018), pp. 52-64 | Zbl
[6] Dynamic programming on graphs with bounded treewidth, Automata, languages and programming (Tampere, 1988) (Lecture Notes in Comput. Sci.), Volume 317, Springer, Berlin (1988), pp. 105-118 | Zbl | MR | DOI
[7] Treewidth computations II: lower bounds, Information and Computation, Volume 209 (2011), pp. 1103-1119 | Zbl | MR | DOI
[8] Tropical hyperelliptic curves, Journal of Algebraic Combinatorics, Volume 37 (2013), pp. 331-359 | MR | DOI | Zbl
[9] A First Course in Graph Theory, Dover books on mathematics, Dover Publications, 2012
[10] On metric graphs with prescribed gonality, Journal of Combinatorial Theory. Series A, Volume 156 (2018), pp. 1-21 | MR | DOI | Zbl
[11] A tropical proof of the Brill-Noether theorem, Advances in Mathematics, Volume 230 (2012) no. 2, pp. 759-776 | MR | DOI | Zbl
[12] A combinatorial Li–Yau inequality and rational points on curves, Mathematische Annalen, Volume 361 (2015), pp. 211-258 | MR | DOI | Zbl
[13] Divisors and Sandpiles: An Introduction to Chip-Firing, Amer. Math. Soc., Providence, RI, 2018 | Zbl
[14] Self-organized critical state of sandpile automaton models, Physical Review Letters, Volume 64 (1990) no. 14, pp. 1613-1616 | MR | Zbl | DOI
[15] The geometry of syzygies: a second course in commutative algebra and algebraic geometry, Graduate texts in mathematics, Springer, New York, 2005 | Zbl
[16] Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compositio Math., Volume 6 (1939), pp. 239-250 | mathdoc-id | Zbl | MR
[17] A Riemann–Roch theorem in tropical geometry, Mathematische Zeitschrift, Volume 259 (2008), pp. 217-230 | MR | Zbl | DOI
[18] Computing divisorial gonality is hard (2015) (https://arxiv.org/abs/1504.06713v1)
[19] Rank-determining sets of metric graphs, Journal of Combinatorial Theory. Series A, Volume 118 (2011), pp. 1775-1793 | MR | Zbl | DOI
[20] Tropical curves, their Jacobians and theta functions, Curves and abelian varieties (Contemp. Math.), Volume 465, Amer. Math. Soc., Providence, RI, 2008, pp. 203-230 | MR | Zbl | DOI
[21] A discrete analogue of the harmonic morphism and Green kernel comparison theorems, Glasg. Math. J., Volume 42 (2000) no. 3, pp. 319-334 | MR | Zbl | DOI
[22] Stable gonality of graphs, Masters thesis, Utrecht University (Netherlands) (2017)
[23] Reduced divisors and gonality in finite graphs, Bachelor’s thesis, Mathematisch Instituut, Universiteit Leiden (Netherlands) (2012)
[24] Treewidth is a lower bound on graph gonality (2014) (https://arxiv.org/abs/1407.7055)
Cité par Sources :