Voir la notice de l'article provenant de la source Numdam
We study the algebraic combinatorics of monomial degenerations of Plücker forms which is governed by matching fields in the sense of Sturmfels and Zelevinsky. We provide a necessary condition for a matching field to yield a SAGBI basis of the Plücker algebra for -planes in -space. When the ideal associated to the matching field is quadratically generated this condition is both necessary and sufficient. Finally, we describe a family of matching fields, called -block diagonal, whose ideals are quadratically generated. These matching fields produce a new family of toric degenerations of .
Mohammadi, Fatemeh 1 ; Shaw, Kristin 2
@article{ALCO_2019__2_6_1109_0, author = {Mohammadi, Fatemeh and Shaw, Kristin}, title = {Toric degenerations of {Grassmannians} from matching fields}, journal = {Algebraic Combinatorics}, pages = {1109--1124}, publisher = {MathOA foundation}, volume = {2}, number = {6}, year = {2019}, doi = {10.5802/alco.77}, mrnumber = {4049839}, zbl = {07140426}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.77/} }
TY - JOUR AU - Mohammadi, Fatemeh AU - Shaw, Kristin TI - Toric degenerations of Grassmannians from matching fields JO - Algebraic Combinatorics PY - 2019 SP - 1109 EP - 1124 VL - 2 IS - 6 PB - MathOA foundation UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.77/ DO - 10.5802/alco.77 LA - en ID - ALCO_2019__2_6_1109_0 ER -
%0 Journal Article %A Mohammadi, Fatemeh %A Shaw, Kristin %T Toric degenerations of Grassmannians from matching fields %J Algebraic Combinatorics %D 2019 %P 1109-1124 %V 2 %N 6 %I MathOA foundation %U http://geodesic.mathdoc.fr/articles/10.5802/alco.77/ %R 10.5802/alco.77 %G en %F ALCO_2019__2_6_1109_0
Mohammadi, Fatemeh; Shaw, Kristin. Toric degenerations of Grassmannians from matching fields. Algebraic Combinatorics, Tome 2 (2019) no. 6, pp. 1109-1124. doi : 10.5802/alco.77. http://geodesic.mathdoc.fr/articles/10.5802/alco.77/
[1] On the f-vectors of Gelfand-Tsetlin polytopes, Eur. J. Comb., Volume 67 (2018), pp. 61-77 | Zbl
[2] Combinatorics of maximal minors, J. Algebr. Comb., Volume 2 (1993) no. 2, pp. 111-121 | Zbl | MR | DOI
[3] Oriented Matroids, Cambridge University Press, 1999 | Zbl
[4] Toric degenerations of Gr and Gr via plabic Graphs, Ann. Comb., Volume 22 (2018) no. 3, pp. 491-512 | Zbl | MR | DOI
[5] Computing toric degenerations of flag varieties, Combinatorial Algebraic Geometry, Springer-Verlag New York, 2017, pp. 247-281 | Zbl | DOI
[6] Sagbi bases with applications to blow-up algebras, J. Reine Angew. Math., Volume 474 (1996), pp. 113-138 | MR | Zbl
[7] Tropical convexity, Doc. Math., Volume 9 (2004), pp. 1-27 | Zbl | MR
[8] Cellular resolutions from mapping cones, J. Comb. Theory, Ser. A, Volume 128 (2014), pp. 180-206 | DOI | Zbl | MR
[9] degeneration of flag varieties, Sel. Math., New Ser., Volume 18 (2012) no. 3, pp. 513-537 | DOI | Zbl | MR
[10] Stiefel tropical linear spaces, J. Comb. Theory, Ser. A, Volume 135 (2015), pp. 291-331 | DOI | Zbl | MR
[11] How to draw tropical planes, Electron. J. Comb., Volume 16 (2009) no. 2, R6, 26 pages | MR | Zbl
[12] Distributive lattices, bipartite graphs and Alexander duality, J. Algebr. Comb., Volume 22 (2005) no. 3, pp. 289-302 | DOI | Zbl | MR
[13] Every affine graded ring has a Hodge algebra structure, Rend. Semin. Mat., Univ. Politec. Torino, Volume 44 (1986) no. 2, pp. 277-286 | Zbl | MR
[14] Distributive Lattices, Affine Semigroup Rings and Algebras with Straightening Laws, Commutative Algebra and Combinatorics (Adv. Stud. Pure Math.), Volume 11, Mathematical Society of Japan, Tokyo, Japan (1987), pp. 93-109 | MR | Zbl | DOI
[15] The symplectic geometry of polygons in Euclidean space, J. Differ. Geom., Volume 44 (1996) no. 3, pp. 479-513 | MR | Zbl | DOI
[16] Khovanskii bases, higher rank valuations and tropical geometry (2016) (arXiv preprint https://arxiv.org/abs/1610.00298) | Zbl
[17] Toric degeneration of Schubert varieties and Gelfand–Tsetlin polytopes, Adv. Math., Volume 193 (2005) no. 1, pp. 1-17 | DOI | Zbl | MR
[18] On the toric ideal of a matroid, Adv. Math., Volume 259 (2014), pp. 1-12 | MR | Zbl | DOI
[19] Introduction to tropical geometry, Grad. Stud. Math., 161, American Mathematical Society, Providence, RI, 2015, xii+363 pages | Zbl | MR
[20] Combinatorial commutative algebra, Grad. Texts Math., 227, Springer-Verlag, New York, 2005, xiv+417 pages | Zbl | MR
[21] Toric degenerations of Gelfand–Cetlin systems and potential functions, Adv. Math., Volume 224 (2010) no. 2, pp. 648-706 | MR | Zbl | DOI
[22] Toric ideals generated by quadratic binomials, J. Algebra, Volume 218 (1999) no. 2, pp. 509-527 | MR | DOI | Zbl
[23] Newton–Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians (2017) (arXiv preprint https://arxiv.org/abs/1712.00447)
[24] Subalgebra bases, Commutative Algebra (Lect. Notes Math.), Volume 1430, Springer, Berlin, Heidelberg, 1990, pp. 61-87 | DOI | Zbl | MR
[25] The tropical Grassmannian, Adv. Geom., Volume 4 (2004) no. 3, pp. 389-411 | Zbl | MR
[26] Gröbner bases and convex polytopes, Univ. Lect. Ser., 8, American Mathematical Society, 1996 | Zbl
[27] Maximal minors and their leading terms, Adv. Math., Volume 98 (1993) no. 1, pp. 65-112 | MR | DOI | Zbl
[28] A unique exchange property for bases, Linear Algebra Appl., Volume 31 (1980), pp. 81-91 | DOI | Zbl | MR
[29] The degeneration of the Grassmannian into a toric variety and the calculation of the eigenspaces of a torus action, J. Algebr. Stat., Volume 6 (2015) no. 1, pp. 62-79 | MR | Zbl
Cité par Sources :