On the double-affine Bruhat order: the ε=1 conjecture and classification of covers in ADE type
Algebraic Combinatorics, Tome 2 (2019) no. 2, pp. 197-216.

Voir la notice de l'article provenant de la source Numdam

For any Kac–Moody group G, we prove that the Bruhat order on the semidirect product of the Weyl group and the Tits cone for G is strictly compatible with a -valued length function. We conjecture in general and prove for G of affine ADE type that the Bruhat order is graded by this length function. We also formulate and discuss conjectures relating the length function to intersections of “double-affine Schubert varieties”.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.37
Classification : 05E10
Keywords: Kac–Moody groups, double-affine Bruhat order

Muthiah, Dinakar 1 ; Orr, Daniel 2

1 Department of Mathematics and Statistics Lederle Graduate Research Tower 1623D University of Massachusetts Amherst 710 N. Pleasant Street Amherst MA 01003-9305 (USA)
2 Department of Mathematics MC 0123 460 McBryde Hall Virginia Tech 225 Stanger St. Blacksburg VA 24061 (USA)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2019__2_2_197_0,
     author = {Muthiah, Dinakar and Orr, Daniel},
     title = {On the double-affine {Bruhat} order: the $\varepsilon =1$ conjecture and classification of covers in {ADE} type},
     journal = {Algebraic Combinatorics},
     pages = {197--216},
     publisher = {MathOA foundation},
     volume = {2},
     number = {2},
     year = {2019},
     doi = {10.5802/alco.37},
     mrnumber = {3934828},
     zbl = {1414.05304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.37/}
}
TY  - JOUR
AU  - Muthiah, Dinakar
AU  - Orr, Daniel
TI  - On the double-affine Bruhat order: the $\varepsilon =1$ conjecture and classification of covers in ADE type
JO  - Algebraic Combinatorics
PY  - 2019
SP  - 197
EP  - 216
VL  - 2
IS  - 2
PB  - MathOA foundation
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.37/
DO  - 10.5802/alco.37
LA  - en
ID  - ALCO_2019__2_2_197_0
ER  - 
%0 Journal Article
%A Muthiah, Dinakar
%A Orr, Daniel
%T On the double-affine Bruhat order: the $\varepsilon =1$ conjecture and classification of covers in ADE type
%J Algebraic Combinatorics
%D 2019
%P 197-216
%V 2
%N 2
%I MathOA foundation
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.37/
%R 10.5802/alco.37
%G en
%F ALCO_2019__2_2_197_0
Muthiah, Dinakar; Orr, Daniel. On the double-affine Bruhat order: the $\varepsilon =1$ conjecture and classification of covers in ADE type. Algebraic Combinatorics, Tome 2 (2019) no. 2, pp. 197-216. doi : 10.5802/alco.37. http://geodesic.mathdoc.fr/articles/10.5802/alco.37/

[1] Björner, Anders; Brenti, Francesco Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, 2005, xiv+363 pages | Zbl | MR

[2] Braverman, Alexander; Finkelberg, Michael Pursuing the double affine Grassmannian. I. Transversal slices via instantons on A k -singularities, Duke Math. J., Volume 152 (2010) no. 2, pp. 175-206 | Zbl | MR | DOI

[3] Braverman, Alexander; Kazhdan, David; Patnaik, Manish M. Iwahori-Hecke algebras for p-adic loop groups, Invent. Math., Volume 204 (2016) no. 2, pp. 347-442 | Zbl | MR | DOI

[4] Finkelberg, Michael; Mirković, Ivan Semi-infinite flags. I. Case of global curve 1 , Differential topology, infinite-dimensional Lie algebras, and applications (Advances in the Mathematical Sciences), Volume 194, American Mathematical Society, 1999, pp. 81-112 | Zbl | MR | DOI

[5] Kac, Victor G. Infinite-dimensional Lie algebras, Cambridge University Press, 1990, xxii+400 pages | Zbl | MR | DOI

[6] Muthiah, Dinakar On Iwahori-Hecke algebras for p-adic loop groups: double coset basis and Bruhat order, Am. J. Math., Volume 140 (2018) no. 1, pp. 221-244 | Zbl | MR | DOI

Cité par Sources :