Voir la notice de l'article provenant de la source Numdam
The elements of Markoff triples are given by coefficients in certain matrix products defined by Christoffel words, and the Markoff injectivity conjecture, a longstanding open problem (also known as the uniqueness conjecture), is then equivalent to injectivity on Christoffel words. A -analog of these matrix products has been proposed recently, and we prove that injectivity on Christoffel words holds for this -analog. The proof is based on the evaluation at . Other roots of unity provide some information on the original problem, which corresponds to the case . We also extend the problem to arbitrary words and provide a large family of pairs of words where injectivity does not hold.
Labbé, Sébastien 1 ; Lapointe, Mélodie 2 ; Steiner, Wolfgang 3
@article{ALCO_2023__6_6_1677_0, author = {Labb\'e, S\'ebastien and Lapointe, M\'elodie and Steiner, Wolfgang}, title = {A $q$-analog of the {Markoff} injectivity conjecture holds}, journal = {Algebraic Combinatorics}, pages = {1677--1685}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {6}, year = {2023}, doi = {10.5802/alco.322}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.322/} }
TY - JOUR AU - Labbé, Sébastien AU - Lapointe, Mélodie AU - Steiner, Wolfgang TI - A $q$-analog of the Markoff injectivity conjecture holds JO - Algebraic Combinatorics PY - 2023 SP - 1677 EP - 1685 VL - 6 IS - 6 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.322/ DO - 10.5802/alco.322 LA - en ID - ALCO_2023__6_6_1677_0 ER -
%0 Journal Article %A Labbé, Sébastien %A Lapointe, Mélodie %A Steiner, Wolfgang %T A $q$-analog of the Markoff injectivity conjecture holds %J Algebraic Combinatorics %D 2023 %P 1677-1685 %V 6 %N 6 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.322/ %R 10.5802/alco.322 %G en %F ALCO_2023__6_6_1677_0
Labbé, Sébastien; Lapointe, Mélodie; Steiner, Wolfgang. A $q$-analog of the Markoff injectivity conjecture holds. Algebraic Combinatorics, Tome 6 (2023) no. 6, pp. 1677-1685. doi: 10.5802/alco.322
Cité par Sources :