A q-analog of the Markoff injectivity conjecture holds
Algebraic Combinatorics, Tome 6 (2023) no. 6, pp. 1677-1685

Voir la notice de l'article provenant de la source Numdam

The elements of Markoff triples are given by coefficients in certain matrix products defined by Christoffel words, and the Markoff injectivity conjecture, a longstanding open problem (also known as the uniqueness conjecture), is then equivalent to injectivity on Christoffel words. A q-analog of these matrix products has been proposed recently, and we prove that injectivity on Christoffel words holds for this q-analog. The proof is based on the evaluation at q=exp(iπ/3). Other roots of unity provide some information on the original problem, which corresponds to the case q=1. We also extend the problem to arbitrary words and provide a large family of pairs of words where injectivity does not hold.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.322
Classification : 11J06, 68R15, 05A30
Keywords: Markoff number, Christoffel word, $q$-analog

Labbé, Sébastien 1 ; Lapointe, Mélodie 2 ; Steiner, Wolfgang 3

1 Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
2 Université de Moncton Département de mathématiques et de statistique 18 avenue Antonine-Maillet Moncton NB E1A 3E9, Canada
3 Université Paris Cité, CNRS, IRIF, F–75006 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2023__6_6_1677_0,
     author = {Labb\'e, S\'ebastien and Lapointe, M\'elodie and Steiner, Wolfgang},
     title = {A $q$-analog of the {Markoff} injectivity conjecture holds},
     journal = {Algebraic Combinatorics},
     pages = {1677--1685},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {6},
     year = {2023},
     doi = {10.5802/alco.322},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.322/}
}
TY  - JOUR
AU  - Labbé, Sébastien
AU  - Lapointe, Mélodie
AU  - Steiner, Wolfgang
TI  - A $q$-analog of the Markoff injectivity conjecture holds
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1677
EP  - 1685
VL  - 6
IS  - 6
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.322/
DO  - 10.5802/alco.322
LA  - en
ID  - ALCO_2023__6_6_1677_0
ER  - 
%0 Journal Article
%A Labbé, Sébastien
%A Lapointe, Mélodie
%A Steiner, Wolfgang
%T A $q$-analog of the Markoff injectivity conjecture holds
%J Algebraic Combinatorics
%D 2023
%P 1677-1685
%V 6
%N 6
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.322/
%R 10.5802/alco.322
%G en
%F ALCO_2023__6_6_1677_0
Labbé, Sébastien; Lapointe, Mélodie; Steiner, Wolfgang. A $q$-analog of the Markoff injectivity conjecture holds. Algebraic Combinatorics, Tome 6 (2023) no. 6, pp. 1677-1685. doi: 10.5802/alco.322

Cité par Sources :